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1 Introduction

The surprising discovery of adversarial examples by Szegedy et al. [6] has led to new ways
of thinking about unsupervised training of deep models [2] while at the same time casuing
confusion and concern about the nature of learning in such (deep) models. These notes
explore the analysis of adversarial examples given in [3] and elsewhere.

What Szegedy et al. [6] discovered was that several machine learning models, including
state-of-the-art neural networks, are vulnerable to adversarial examples. That is, these
machine learning models can misclassify examples that are only slightly different (imper-
ceptibly so in many cases) from correctly classified examples drawn from the data distri-
bution. In many cases, a wide variety of models with different architectures trained on
different subsets of the training data misclassify the same adversarial example (this is kind
of shocking). The implication is that adversarial examples expose fundamental problems
in popular training algorithms.

At the time of publication [6], the cause of these adversarial examples was a mystery, and
speculative explanations have suggested it is due to extreme nonlinearity of deep neural
networks, perhaps combined with insufficient model averaging and insufficient regulariza-
tion of the purely supervised learning problem. What [3] shows is that these speculative
hypotheses are unnecessary. As we shall see, linear behavior in high-dimensional spaces is
sufficient to cause the existence of adversarial examples.

In addition, [3] shows that generic regularization strategies such as dropout, pre-training
and model averaging or ensembling do not confer a significant reduction in a model’s
vulnerability to adversarial examples. On the other hand, changing to nonlinear model
families such as RBF networks can confer some resistance (to such adversarial examples).
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These explanations reveal fundamental tradeoffs between models that are easy to train1

and models that use nonlinear effects to resist adversarial perturbation. Not surprisingly,
these tradeoffs appear to be fundamental; however, Goodfellow et.al. [3] suggest that it
may be possible to escape these tradeoffs by designing more powerful optimization methods
that can successfully train more nonlinear models.

2 Linear explanation of Adversarial Examples

This section follows the analysis and notation of Section 3 of [3], which explains the exis-
tence of adversarial examples for linear models. The section starts with a description of
the precision of the sensor or storage media. Here they use the common example digital
images, which often use only eight bits per pixel (gray scales) and as a result they discard
all information below 1

255 of the dynamic range. The point here is that since the precision of
the features is limited, it makes little sense for a classifier to respond differently to an input
x than to an adversarial input x̂ = x+ η, if of course every element of the perturbation η
is smaller than the precision of the features. Let’s say that ε is the largest value below the
resolution of the sensor (or storage media). Then for problems with well-separated classes,
we expect a classifier to assign the same class to x and x̂, so long as ||η||∞ < ε (where
||x||∞ is the max or infinity norm).

Next, consider the activation induced by an adversarial example x̂:

x̂ = x + η # adversarial example x̂ given perturbation η (1)

wTx̂ = wTx+ wTη # activation wTx̂ induced by η (2)

Notes:

• The adversarial perturbation causes the activation to grow by wTη

• wTη is maximized, subject to ||η||∞ < ε, by assigning η = sign(w) why is this
true?

Now, if dim(w) = n and |w| = m, then the activation wTη will grow by εmn What is
interesting here (among other things) is that the max norm ||η||∞, does not grow with the
dimensionality of the input, while at the same time the change in activation caused by η
can grow linearly with n. As a result in high dimensional cases many very small changes to
the input can add up to one large change to the output. So essentially we see that even a
simple linear model can have adversarial examples if its input has sufficient dimensionality.
This result is in stark contrast to thinking around the time of [6], when it was thought that
adversarial examples were a property of highly non-linear deep neural networks.

1due to their linearity
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Figure 1: Fast adversarial example generation applied to GoogLeNet on ImageNet [6].
GoogLeNet’s classification of this image can be changed, perhaps surprisingly, by adding
an imperceptibly small vector whose elements are sign(∇xJ(θ,x,y)), that is, the sign of
the gradient of the cost function. Here ε = .007, roughly 2 ∗ (1/255), corresponds to the
magnitude of the smallest bit of an 8 bit image encoding (after GoogLeNet’s conversion to
real numbers).

3 What about Non-Linear Models?

Goodfellow, et.al [3] hypothesizes that many neural network architectures are too linear
to resist linear adversarial perturbation. These include LSTMs [5], ReLUs [1] and Maxout
networks [4], which are all intentionally designed to behave in very linear ways so that they
will be easier to optimize2. The important conclusion here is that the behavior of simple
linear models under adversarial perturbation η described in Section 2 should also apply to
(”damage”) neural networks.

In typical form, let θ be parameters of a model, y the targets associated with x (in the
supervised learning case) and J(θ,x,y) be the cost function (optimization objective) to
train the neural network. Here we can linearize the cost function around the current value
of θ, obtaining an optimal max-norm constrained perturbation of

η = εsign(∇xJ(θ,x,y)) (3)

Equation 3 is referred to as the fast gradient sign method for generating adversarial exam-

2The more nonlinear models (e.g., sigmoid networks) are carefully tuned to spend most of their time in
the non-saturating, more linear regime for the same reason.
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ples. Note that, importantly, the gradient in Equation 3 can be efficiently computing using
back-propagation. An example of the fast gradient sign method is shown in Figure 1.
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