
Introduction to Autoencoders
Draft 0.0

David Meyer

dmm@brocade.com

August 5, 2015

Abstract

Recent advances in machine learning, coupled with the onslaught of data being
collected from a wide variety of sensors has rekindled interest in using machine learning
as a method to uncover hidden structure in these ever growing data sets. In particular,
advances in the design of multi-layer deep artificial neural networks (DNNs) combined
with effective approaches for training DNNs has opened up the opportunity to use
DNNs for novel applications ranging from speech recognition and generation to self-
driving vehicles. DNNs are multiple-layer architectures (deep architectures) which
extract inherent features in data and discover important hidden structure in diverse
data sets. Given that the factors contributing to traffic flow, congestion, and queuing
delay in a data center result from the non-obvious interaction of complex factors,
DNNs represent a novel and powerful method for learning how these factors interact
and for predicting a wide variety of complex network behaviors. This paper provides
an overview of the basic building block of deep learning networks, the auto-encoder.
After describing the basics of auto-encoders, we describe how deep networks are built
by stacking auto-encoders to build deep learning artificial neural networks.

1 Introduction

Recent advances in machine learning, coupled with the onslaught of data being collected
from a wide variety of sensors has rekindled interest in using machine learning as a method
to uncover hidden structure in these ever growing data sets1. In particular, advances in
the design of multi-layer deep artificial neural networks (DNNs) combined with effective
approaches for training DNNs has opened up the opportunity to use DNNs for novel appli-
cations ranging from speech recognition and generation to self-driving vehicles. DNNs are
multiple-layer architectures (deep architectures) which extract inherent features in data

1This phenomena is evidenced by the explosive growth in the number of ”data analytics” startups [6].

1

and discover important hidden structure in diverse data sets. Given that the factors con-
tributing to traffic flow, congestion, and queuing delay in a data center result from the
non-obvious interaction of complex factors, DNNs represent a novel and powerful method
for learning how these factors interact and for predicting a wide variety of complex network
behaviors.

Neural networks had traditionally been trained with an algorithm called back propa-
gation [12], which is so named because the algorithm propagates the error in the neural
network’s estimate backward from the output layer towards the input layer. Back propaga-
tion also requires labeled data sets; these training sets have elements of the form (x(i), t(i)),
where the x(i) are the inputs and the t(i) are the targets (the targets tell what the data
is, for example, ”cat”). The DNN computes an output value, sometimes called (largely for
historical reasons) the hypothesis hθ(x

(i)). hθ(x
(i)) is then compared to the target t(i) and

the difference hθ(x
(i))− t(i) is taken as an estimate of the model’s error. This error is then

”back propagated” (with the help of additional algorithmic machinery) down the DNN
from output to input, adjusting the model parameters along the way. Back propagation
is an instance of a supervised learning algorithm since it requires labeled data. Training
algorithms that use unlabeled data are referred to as unsupervised learning algorithms.

There were, however, several weaknesses with the back propagation algorithm which
essentially limited the utility of DNNs. These included the fact that back propagation
really didn’t work well in deep networks (for technical reasons relating to the computation
of what are called gradients) and the tendency for the algorithm to fall into poor local
minima when the DNN was initialized with random weights2. The requirement for labeled
data sets was also a problem since most data is unlabeled. These two problems with DNNs,
the need for labeled training sets and ineffective training via back propagation, were largely
overcome by the groundbreaking work of Geoffrey Hinton and his colleagues in 2006 [4].
Hinton’s breakthrough was to show that unsupervised, greedy, layerwise training of DNNs
was effective in overcoming the problems with traditional back propagation training. This
is discussed in more detail in Section 2.2.

2 So What Is An AutoEncoder?

In this section we introduce our basic methodology which is based on a deep-learning based
prediction model. A stacked autoencoder [13] model is used to learn generic features, and
as such is part of a representation learning system. This section reviews basic autoencoder
and stacked autoencoder technology.

2The problem of non-optimal minima is a property of non-convex optimization, where local minima
aren’t necessarily global minima when the some of the DNNs parameters were initialized with random
values [2].

2

2.1 The Basic Autoencoder

The traditional autoencoder is an artificial neural network that attempts to reproduce its
input, i.e., the target output is the input. More formally (and following the notation of [9]),
an autoencoder takes an input vector x ∈ [0, 1]d and maps it to a hidden representation
y ∈ [0, 1]d through a deterministic mapping y = fθ(x) = s(Wx + b), parameterized by
θ = {W,b}. W is a d′ × d weight matrix, b is a bias vector and s is the sigmoid3

activation function, s(x) = 1
1+e−x . The hidden representation y, sometimes called the

latent representation, is then mapped back to a reconstructed vector z ∈ [0, 1]d, where
z = gθ′(y) = s(W′y + b′), with θ′ = {W′,b′}. This scenario is depicted in cartoon
form in Figure 1. Thus each training x(i) is thus mapped to a corresponding y(i) and a
reconstruction (of x(i)) z(i). Finally, note that the weight matrix W′ may optionally be
constrained by W = WT , in which case the autoencoder is said to have tied weights. Each
training example x(i) is thus mapped to a corresponding y(i) which is then mapped to a
reconstruction z(i) such that z(i) ≈ x(i).

The basic idea here is that the autoencoder is constructed in such a way that the
mapping x(i) 7→ y(i) reveals essential structure in the input vector x(i) that is not otherwise
obvious. For example, if the autoencoder has fewer hidden units than input units it must
find a representation that essentially compresses the input in such a way that it can be
efficiently reconstructed. The compressed representation has lower dimensionality than the
input and is represents an abstraction of the input. In the case of image recognition x(i)

might be an image (pixels) while y(i) might consist of edges in various orientations.
The parameters θ and θ′ of the model are optimized to minimize the average recon-

struction error as shown in Equation 1:

θ∗, θ′∗ = arg min
θ,θ′

1

n

n∑
i=1

L
(
x(i), z(i)

)
= arg min

θ,θ′

1

n

n∑
i=1

L
(
x(i), gθ′(fθ(x

(i))
) (1)

Here L is a loss function such as the traditional squared error L(x, z) =‖ x − z ‖22.
Note that if x and z can be interpreted as either bit vectors or vectors or probabilities (i.e.,
they are Bernoulli probability vectors), then the reconstruction cross-entropy, as defined
in Equation 2, can be used.

LH(x, z) = H(Bx,Bz)

= −
d∑

k=1

[xk log zk + (1− xk) log(1− zk)]
(2)

3Note that the sigmoid activation function s ”squashes” its input into the range [0, 1]

3

Figure 1: Classic Autoencoder

More generally, this methodology casts learning as optimization using Empirical Risk
Minimization [15]. The Empirical Risk R̂ is defined as

R̂(fθ, Dn) =
n∑
i=1

L
(
fθ(x

(i)), z(i)
)

(3)

In some cases it may be necessary to induce a preference for some values of the parameters
to avoid overfitting [3]. To avoid overfitting we can define a Regularized Empirical Risk,
where the regularization imposes a degree of sparseness on the derived encodings. Suppose
we have a training set Dn = {x(1),x(2), ...,x(n)}. Then the Regularized Empirical Risk is
defined as follows:

R̂λ(fλ, Dn) =

(
Dn∑
i=1

L
(
fθ(x

(i)), z(i)
))

+ λΩ(θ) (4)

where Ω penalizes more or less certain parameter values and λ ≥ 0 controls the amount of
regularization. Regularizers generally perform two basic functions: First, a regularizer can
keep the autoencoder from learning the identity function (in which case the autoencoder
would be useless). The second function that a regularizer provides is that it enforces certain
properties on the weights. For example, using the L1-norm4 as a regularizer, where the

L1-norm ‖ x ‖1=
n∑
i
| xi |, enforces spareness on the vector x. This is because in order to

4The L1-norm is sometimes called the taxicab norm

4

minimize ‖ x ‖1, some (or most) of the xi have to be zero. On the other hand, using the
L2-norm5 is defined as follows: Let x be an n-dimensional vector in Rn. Then the L2-norm

‖ x ‖2=
(

n∑
i=1
| xi |2

) 1
2

, which forces the xi (i.e., the weights) to be small. In general, the

p-norm is defined to be ‖ x ‖p=
(

n∑
i=1
| xi |p

) 1
p

.

Thus learning in this setting amounts to finding optimal parameters θ∗ that satisfy
θ∗ = arg minθ R̂(fθ, Dn). However, one of the risks of using autoencoders, as mentioned
above, is that the autoencoder can potentially learn the identity function and thereby not
extract useful features from the input. This problem is especially acute if the size of the
hidden layer has the same number of units as the input layer (or more). One way to train
an autoencoders that has more hidden units than input units to learn useful features is to
impose sparsity constraints such as the regularizations described above on the minimization
problem [8] described in Equation 1. The effect is to force the representations found by the
hidden layers to be sparse. Such an autoencoder is referred to as a sparse autoencoder. A
popular sparsity constraint is based on the Kullback-Leibler divergence [10]. The Kullback-
Leibler Divergence DKL(P ‖ Q) can be thought of as a measure of the information lost
when probability distribution Q is used to approximate P . For our purposes we define
DKL(ρ ‖ ρ̂) as follows

DKL(ρ ‖ ρ̂) = ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

(5)

where ρ is a sparsity parameter who’s value is close to zero and ρ̂j = 1
n

n∑
i=1

s(Wx
(i)
j + b),

the average activation of hidden unit j. Putting this together with Equation 1 we get the
following optimization problem:

arg min
θ,θ′

1

n

n∑
i=1

L
(
x(i), gθ′(fθ(x

(i))
)

+ γ

HD∑
j=1

DKL(ρ ‖ ρ̂) (6)

where HD is th number of hidden units and γ is a sparsity weighting term. Kullback-
Leibler Divergence has the nice property that DKL(ρ ‖ ρ̂) = 0 if ρ = ρ̂ (and so weighting
these cases improves the sparsity of the encoding; this is the job of the γ parameter).

2.2 Stacked Autoencoders

Stacked Autoencoders (SAEs) are, as the name implies, a stack of single-level autoencoders;
hence the SAE is a deep learning model [14]. SAEs use the autoencoders described above
as building blocks to create a deep network [13]. While deep architectures can be more

5The L2-norm is sometimes called the Euclidean norm

5

expressive and can extract more sophisticated features from input data, until relatively
recently deep networks were thought to be too difficult to train and as such of limited utility.
As mentioned above, the breakthrough came when Geoffrey Hinton and his colleagues
showed how fast, layerwise greedy and unsupervised algorithms can be used to initialize
a slower algorithm that fine tunes the learned weights and provides very good results
on deep networks [4]. This result revitalized the machine learning community and deep
architectures been successfully applied to a wide variety of classification and prediction
problems [5].

Figure 2: Layerwise training of a Stacked Autoencoder

The basic idea behind layerwise training is shown in Figure 2. The idea here is to train
each layer as described in Equation 6. After a layer is trained, the autoencoder output
layer is discarded and the features (the y(i)) are used as the input to the next layer. Hence
the training is greedy and layerwise. Finally, the last layer in the network, usually either
a linear regression layer (if the output values are continuous) or logistic regression layer (if
the output is discrete). The final step is to fine tune the network in a supervised fashion
using the back propagation algorithm [12].

6

3 Conclusions and Future Work

4 Acknowledgements

7

References

[1] M. Bjorklund. RFC 7223: A YANG Data Model for Interface Management.

[2] Mung Chiang. Nonconvex optimization for communication systems. Technical report,
Princeton University, 2011.

[3] Tom Dietterich. Overfitting and undercomputing in machine learning overfitting and
undercomputing in machine learning. ACM Comuting Surveys, 1995.

[4] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm
for deep belief nets. Neural Computation, 2006.

[5] http://deeplearning.net.

[6] https://angel.co/big-data analytics.

[7] K. McCloghrie and F. Kastenholz. RFC 2863: The Interfaces Group MIB.

[8] R. B. Palm. Prediction as a candidate for learning deep hierarchical models of data,.
Technical Univ. Denmark, Palm, Denmark, 2012.

[9] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol . Ex-
tracting and composing robust features with denoising autoencoders. Technical Report
1316, Universite de Montreal, 2008.

[10] Fernando Perez-Cruz. Kullback-leibler divergence estimation of continuous distribu-
tions. Technical report, Princeton University, 2011.

[11] Shao Liu, Mung Chiang, Mathias Jourdain, and Jin Li. Congestion location detection:
Methodology, algorithm, and performance. 17th IEEE International Workshop on
Quality of Service, 2007.

[12] B Widrow. 30 years of adaptive neural networks: perceptron, madaline, and back-
propagation. Proceedings of the IEEE, 2002.

[13] Y. Bengio, P. Lamblin, D. Popovici and H. Larochelle. Greedy layerwise training of
deep networks. Proc. Adv. NIPS, pages 153–160, 2007.

[14] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A
review and new perspectives. arXiv.org, 2012.

[15] Yoshua Bengio, Aaron Courville and Pascal Vincent. Representation learning: A
review and new perspectives. IEEE TRANSACTIONS ON PATTERN ANALYSIS
AND MACHINE INTELLIGENCE, 2013.

8

	Introduction
	So What Is An AutoEncoder?
	The Basic Autoencoder
	Stacked Autoencoders

	Conclusions and Future Work
	Acknowledgements

