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1 Introduction

Statistical language models are probability distributions which have many applications, including
speech recognition, machine translation, part-of-speech tagging, parsing, handwriting recognition,
and information retrieval. Given a sequence of length n, a language model assigns a probability
p(x1, . . . , xn) to the whole sequence. Here xi is the ith word or symbol in the sequence. A model
that computes either p(x1, . . . , xm) or p(xn|x1, x2, · · · , xn−1) is called a language model. Using the
chain rule for conditional probabilities [9], we can see that

p(x1, x2, . . . , xn) = p(x1)p(x2|x1)p(x3|x1, x2) · · · p(xn|x1, . . . , xn−1) (1)

=

n∏
i=1

p(xi|x1, x2, . . . , xi−1) (2)

Observe that since our language model is sequential1, the value of n in Equation (2) is in some
sense how far back in time we need to look to predict the next word or symbol (I’ll just say word
from here on out). A language model that looks at the n previous words in a sequence is called an
n-gram, and is defined using the chain rule as shown in Equation (1). Interesting n-gram models
include

p(x1, x2, . . . , xn) ≈
n∏

i=1
p(xi) # the unigram model

p(xi|x1, x2, . . . , xi−1) ≈ p(xi|xi−1) # the bigram model

The unigram model assumes we can predict the ith word, xi, independently of x1, x2, . . . , xi−1 (the
words that came before it). The bigram model assumes that the future is independent of the past
given the present, i.e., the Markov assumption.2

Note that we can estimate the n-gram probabilities in a straightforward way. Consider the bigram
case. Here the Maximum Likelihood Estimate (MLE) is simply is

p(xi|xi−1) =
count(xi−i, xi)

count(xi−1)
# bigram MLE estimate

1xi occurs before xj ∀i, j 1 ≤ i < j
2Sometimes called a first-order Markov assumption.
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Here we are simply counting how many times xi appeared in the context xi−1 and normalizing by
all observations of xi−1.

There are a few problems with n-gram models. First, for any reasonable n the n-gram is likely
to be an insufficient model of the language due to the long-range dependencies typically found in
natural language. This forces larger values of n. The second is that n-grams suffer from sparse data
distributions; as n grows the space of all possible sequences grows rapidly and the probability of
most sequences or next words is tends towards zero. In addition, the number of possible parameters
grows exponentially with n. As a result, there will be never enough of the training data to estimate
parameters of high-order n-gram models. That said, there are many cases in which we can get
away with n-grams.

2 Encoder-Decoder Architecture

Recurrent Neural Networks (RNNs) take a different approach to machine translation. Rather than
keeping counts, a RNN summarizes what it has seen previous steps in its current hidden state;
you can think of the hidden state ht as the memory of the network. Thus ht captures information
about what happened in the previous t − 1 time steps. This means that the RNN must be able
to summarize all the information from the t − 1 previous steps in a fixed length vector (ht). This
property will turn out to be one of the limitations of RNNs that motivated the development of
attention mechanisms. Finally, note that the output distribution at time t, yt, s calculated solely
based on ht.

As an aside, while a vanilla RNNs can in principle capture dependencies over some period of time
in past, in practice they have trouble with long-range dependencies. As a result, these networks are
typically outfitted with some kind of memory, such as in the Long Short-Term Memory (LSTM) or
the gated units described in [3]. Note here: Neural Turing Machines [5] and Differentiable Neural
Computers [6] use a more explicit and function memory; however, as pointed out in [4] the hidden
state matrix is just a memory matrix of the form [ht−L . . . ht−1] ∈ Rn×L, where n is the output
dimension of the RNN cells and L is a sliding window.

Recent state of the art performance on translation tasks has been achieved using the Encoder-
Decoder framework as described in Sutskever et al. [8] and Cho et al. [3]. The following description
of the Encoder-Decoder framework follows the notation found in [1].

In the Encoder-Decoder framework, an encoder reads the input sentence, which is a sequence of
vectors x = (x1, · · · , xTx). The input sequence is taken from a vocabulary Vx, with |Vx| = Kx.
Here each xi is a column vector of length Kx such that xi ∈ RKx×1 (usually written xi ∈ RKx) is
the one-hot encoding for the word at position i. That is, the ith input word looks like

xi =


x1i
x2i
...

xKxi


so that
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x =


x11 x12 · · · x1i · · · x1Tx

x21 x22 · · · x2i · · · x2Tx

...
...

. . .
...

. . .
...

xKx1 xKx2 · · · xKxi · · · xKxTx



The encoder RNN calculates its hidden state3 at time t, ht ∈ Rn as

ht = f(xt, ht−1)

and also produces a context vector c from the hidden states: c = q({h1, h2, . . . , hTx}). As an
example, [8] used an LSTM for f and defined q({h1, h2, . . . , hT }) = hT .

The decoder is usually trained to predict the next word yt given the context vector c and all the
previously predicted words {y1, . . . , yt−1}; the decoder defines a probability over y (the translation)
by decomposing it into its joint probabilities, conditioned on the previously translated words and
the context vector.

p(y) =
T∏
t=1

p(yt|{y1, y2, . . . , yTy}, c)

where y = (y1, . . . , yTy). With an RNN, the conditional probability of each translation is modeled
as

p(yt|{y1, y2, . . . , yTy}, c) = g(yt−1, st, c)

where g is a nonlinear, potentially multi-layered, function that outputs the probability of yt, and
st is the hidden state of the RNN.

Recurrent Neural Networks (RNNs) take a different approach to machine translation. From a
probabilistic perspective, the machine translation task is to find a target sentence y that maximizes
the conditional probability of y given a source sentence x, that is, argmax p(y|x) (where the
argmax is over y). In neural machine translation, a parameterized model is fit which maximizes
the conditional probability of sentence pairs using a parallel training corpus.

3In general the hidden state of the encoder is called ht and the hidden state of the decoder is called st.
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2.1 Preliminaries

We consider an input sequence over a vocabulary Vx, with |Vx| = Kx, where the input is a sequence
of vectors x = (x1, · · · , xTx). Here each xi is a column vector of length Kx such that xi ∈ RKx×1

(usually written xi ∈ RKx) is the one-hot encoding for the word at position i. That is, the ith input
word looks like

xi =


x1i
x2i
...

xKxi


so that

x =


x11 x12 · · · x1i · · · x1Tx

x21 x22 · · · x2i · · · x2Tx

...
...

. . .
...

. . .
...

xKx1 xKx2 · · · xKxi · · · xKxTx


3 RNN Encode-Decoder Architecture

4 Appendix A: The Evolution of Attention Models

Figure 1: The Evolution of Attention Models
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