A Few Notes on Causal Inference

David Meyer

dmm@{1-4-5.net,uoregon.edu }

Last update: July 18, 2018

1 Introduction

Most studies in the sciences seek to answer causal rather than associative (i.e. statistical)
questions. These questions require at least some knowledge of the data-generating process
and cannot be computed from the data alone nor from the distributions that govern the
dataE] . Solving causal problems systematically requires certain extensions in the standard
mathematical language of statistics, which include (i) counterfactual analysis, (ii) non-
parametric structural equations, (iii) graphical models, and (iv) the relationship between
counterfactual and graphical methods. The bulk of this note will focus on these four areas.

2 Association (statistics) vs. Causation

The aim of standard statistical analysis is to assess parameters of a distribution from
samples drawn of that distribution. Once we have an estimate of these parameters, we
can infer statistical relationships (i.e. associations) among variables, which in turn allows
us to estimate the probabilities of past and future events and update those probabilities
in light of new information. In general, tasks of this sort are well treated by standard
statistical analysis, so long as experimental conditions remain the same. Causal analysis,
on the other hand, goes one step further; its aim is to infer probabilities under conditions
that are changing, for example, changes induced by treatments or external interventions.
This distinction implies that causal and associational concepts do not mix; there is nothing
in a joint distribution function that tells us how that distribution would change if exter-
nal conditions change, say from observational to experimental setup, because the laws of
probability theory do not dictate how one property of a distribution ought to change when
another property is modified. This information must be provided by causal assumptions
which identify relationships that remain invariant when external conditions change [2].

!This is a key result and was proven by Pearl [I].
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Figure 1: A Simple Structural Equation Model (SEM), where X = Ux and Y = X + Uy.
Unobserved exogenous variables are connected by dashed lines.

3 A Brief Introduction to Structural Equation Models

How can one express mathematically the common understanding that symptoms do not
cause diseases? The earliest attempt to formulate such relationship mathematically was
made in the 1920’s by the geneticist Sewall Wright [3]. Wright used a combination of
equations and graphs to communicate causal relationships. For example, if X stands for a
disease variable and Y stands for a certain symptom of the disease, Wright would write a
linear equationﬂ like

Y =38X+U, (1)

where X is the level or severity of a disease, Y is the level (severity) of the symptom , and
uy is a "noise” variable that represents all other than the disease in question that could
possibly affect Y when X is held constant. Y is sometimes called the response variable
and X is frequently called the treatment.

There is still a problem with Equation [1| however, as it still does not properly express the
causal relationship implied by this assignment process. This is because algebraic equations
are symmetrical objects; if we re-write Equation [1] as

X=-Uy)/p (2)

could be misinterpreted to mean that the symptom influences the disease. To express the
directionality of the underlying process, Wright augmented the equation with a diagram,
later called ”path diagram”, in which arrows are drawn from (perceived) causes to their
(perceived) effects, Importantly, the absence of an arrow makes the empirical claim that
Nature assigns values to one variable irrespective of another. For example, in Figure
the absence of arrow from Y to X represents the claim that symptom Y is not among

2Linear equations are used here for illustration only; see e.g. [4] for examples using nonlinear models.



the factors Uy which affect disease X. Thus, in our example, the complete model of a
symptom and a disease would be written as in Figure |1} where the diagram encodes the
possible existence of (direct) causal influence of X on Y and the absence of causal influence
of Y on X , while the equations encode the quantitative relationships among the variables
involved, to be determined from the data. The parameter 5 in the equation is called a
"path coefficient” and quantifies the direct causal effect of X on Y, given 8 and Uy. In
particular, the equation claims that, a unit increase in X would result in S units increase
of Y regardless of the values taken by other variables in the mode]EL regardless of whether
the increase in X originates from external or internal influences.

The variables Uy and Uy are called ”exogenous”, as they represent observed or unobserved
background factors that the modeler decides to keep unexplained, that is, factors that
influence but are not influenced by the other variables (called ”endogenous”) in the model.
Unobserved exogenous variables are sometimes called ”disturbances” or ”errors”; they
represent factors omitted from the model but judged to be relevant for explaining the
behavior of variables in the model. The variable Ux , for example, represents factors that
contribute to the disease X, which may or may not be correlated with Uy, that is, the
factors that influence the symptomY’.

In reading path diagrams, it is common to use kinship relations such as parent, child,
ancestor, and descendent, the interpretation of which is usually self evident. For example,
an arrow X — Y designates X as a parent (cause) of Y and Y as a child of X. A ”path”
is any consecutive sequence of edges, solid or dashed. For example, there are two paths
between X and Y in Figure [[b): one consisting of the direct arrow X — Y and the
path traces the nodes X, Ux, Uy and Y. We will see later that spurious associations
such as Endogenous Selection Bias [5] can be transmitted on a path between two variables
independent of the direction of the arrows on that path.

Wright’s major contribution to causal analysis, aside from introducing the language of path
diagrams, has been the development of graphical rules for writing down the covariance
of any pair of observed variables in terms of path coefficients and of covariances among
the error terms. In the simple example in Figure [1| we can immediately write down the
covariance for Figure [I] (a) to be Cov(X,Y) = 8 and Cov(X,Y) = 5+ Cov(Ux, Uy) for
Figure [1] (b).

Notice that in path diagrams, causal assumptions are encoded not in the links but, rather
in the missing links. An arrow merely indicates the possibility of causal connection, the
strength of which remains to be determined (from data); a missing arrow represents a claim
of zero influence, while a missing double arrow represents a claim of zero covariance. For
example, in Figure|l| (a), this assumptions that permits us to identify the direct effect 5 are

3As we will see later, this property has many names, one of which is modularity.
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Figure 2: A slightly more complex chain SEM (a) and an intervention on X (b)

encoded by the missing double arrow between Uy and Uy and the missing arrow from Y
to X, indicating that Cov(Uy,Uyx) = 0. Had either or both of these two links been added
to the diagram we would not have been able to identify the direct effect 3 . Such additions
would amount to relaxing the assumption Cov(Uy,Ux) = 0 or the assumption that Y does
not effect X, respectively. Note also that both assumptions are causal, not associational,
since neither can be determined from the joint density of the observed variables, X and
Y. In addition, the association between the unobserved terms, Uy and Ux can only be
uncovered in an experimental setting or by including additional causal assumptions.

Although each causal assumption in isolation cannot be tested, the sum total of all causal
assumptions in a model often has testable implications. The chain model of Figure [2[ (a),
for example, encodes seven causal assumptions, each corresponding to a missing arrow or
a missing double-arrow between a pair of variables. None of those assumptions is testable
in isolation, yet the totality of all those assumptions implies that Z is unassociated with
Y in every stratum of X . Such testable implications can be read off the diagrams using a
graphical criterion known as d-separation [I].

Definition 1 (d-separation) A set S of nodes in a graph G is said to block a path p if
either (i) p contains at least one arrow-emitting node that is in .S, or (ii) p contains at least
one collision node (a ”collider”) that is outside S and has no descendant in S. If S blocks
all paths from X to Y, S is said to d-separate X and Y. Moreover, if X and Y d-separated
by S then X and Y are (statistically) conditionally independent given S, written X I Y|S.
That is

X and Y d-separated by S — X I Y|S (3)

For example, in Figure [2[ (a) the path Uz — Z — X — Y is blocked by S = {Z} and
by S = {X} since each emits an arrow along that path. Consequently we can infer that
the conditional independencies Uz 1Y |Z and Uz 1LY |X will be satisfied in any probability



function that this model can generate, regardless of how we parametrize the arrows. Like-
wise, the path Uz — Z — X <« Ux is blocked by the null set {#} but is not blocked by
S = {Y} since Y is a descendant of the "collider” X. It is an amazing result.

As Pearl is fond of saying, d-separation is a ”gift from the Gods” as it connects a property
of a graph (G) with the joint distribution over X and Y. That is, d-separation is purely a
property of graphs while conditional independence is a property of the (unknown) distri-
butions of X, Y, and S. G will have to have certain properties, which we will have a look
at in just a moment.
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