
Can Congestion in Data Center Networks Be

Predicted By Of Time Of Day?
Draft 0.0

David Meyer

dmm@brocade.com

December 17, 2014

Abstract

The recent explosive growth in data center structure, function and scale has brought
a myriad of new challenges to network operators, including virtualization, development
of new services, and the general scaling of data center capacity. These challenges share
a common implication: network congestion (and hence network delay) within a data
center has is strongly negatively correlated with user quality of experience and operator
efficiency. Hence congestion and the closely related problem of network delay are among
the key concerns for data center and service operators. Much of the literature in this
area generally puts a finer point on the problem: a user’s quality of experience can
be badly affected when even a single flow suffers from a large latency [2]. The work
described in this document demonstrates a novel approach to the congestion control
problem, namely, the use of artificial neural networks to predict nascent congestion
(and hence queuing delay) in data center networks. This capability will allow operators
to both operational and capital expenditures while at the same time optimizing users’
quality of experience. Our longer term goal is to build general framework for predicting
various data center network parameters that effect both operator efficiency and user
quality of experience.

1 Introduction

The recent explosive growth in data center structure, function and scale has brought a
myriad of new challenges to network operators, including virtualization, development of
new services, and the general scaling of data center capacity. These challenges share a
common implication: network congestion (and hence network delay) within a data center
has is strongly negatively correlated with user quality of experience and operator efficiency.
Hence congestion and the closely related problem of network delay are among the key
concerns for data center and service operators. Much of the literature in this area generally

1

puts a finer point on the problem: a user’s quality of experience can be badly affected when
even a single flow suffers from a large latency [2].

The largest part of network delay in today’s data centers comes from the queueing delay
at router and switch interfaces. Since the propagation delay within a data center is in most
cases negligible (in the ideal case a 100 meters of network cabling between two nodes adds
only 0.5 µs of propagation delay, while a single 1500 byte packet queued at a 10Gbps
port already costs 1.2 µs), managing delay is largely about reducing congestion and hence
queuing delay at switch interfaces. For example, DCTCP [9] uses ECN marking to slow
down flows before the relevant queues become full, while HULL [10] takes a further step
and gives up a small amount bandwidth for even lower latency. Our work is also motivated
by the need to reduce the queueing delay in data centers, but here we focus on predicting
nascent congestion on important data center links as a method to minimize queuing delay.
In this work we demonstrate a novel use of Artificial Neural Networks to predict nascent
congestion (and hence queuing delay) in data center networks, which will allow operators
to further optimize both operational and capital expenditures. Our longer term goal is to
build general framework for predicting various data center network parameters that effect
both operator efficiency and user quality of experience.

1.1 Why Artificial Neural Networks?

Recent advances in machine learning, coupled with the onslaught of data being collected
from a wide variety of sensors has rekindled interest in using machine learning as a method
to uncover hidden structure in these ever growing data sets1. In particular, advances in
the design of multi-layer deep artificial neural networks (DNNs) combined with effective
approaches for training DNNs has opened up the opportunity to use DNNs for novel appli-
cations ranging from speech recognition and generation to self-driving vehicles. DNNs are
multiple-layer architectures (deep architectures) which extract inherent features in data
and discover important hidden structure in diverse data sets. Given that the factors con-
tributing to traffic flow, congestion, and queuing delay in a data center result from the
non-obvious interaction of complex factors, DNNs represent a novel and powerful method
for learning how these factors interact and for predicting a wide variety of complex network
behaviors.

Neural networks had traditionally been trained with an algorithm called back propa-
gation [15], which is so named because the algorithm propagates the error in the neural
network’s estimate backward from the output layer towards the input layer. Back propaga-
tion also requires labeled data sets; these training sets have elements of the form (x(i), t(i)),
where the x(i) are the inputs and the t(i) are the targets (the targets tell what the data
is, for example, ”cat”). The DNN computes an output value, sometimes called (largely for
historical reasons) the hypothesis hθ(x

(i)). hθ(x
(i)) is then compared to the target t(i) and

the difference hθ(x
(i))− t(i) is taken as an estimate of the model’s error. This error is then

1This phenomena is evidenced by the explosive growth in the number of ”data analytics” startups [7].

2

”back propagated” (with the help of additional algorithmic machinery) down the DNN
from output to input, adjusting the model parameters along the way. Back propagation
is an instance of a supervised learning algorithm since it requires labeled data. Training
algorithms that use unlabeled data are referred to as unsupervised learning algorithms.

There were, however, several weaknesses with the back propagation algorithm which
essentially limited the utility of DNNs. These included the fact that back propagation
really didn’t work well in deep networks (for technical reasons relating to the computation
of what are called gradients) and the tendency for the algorithm to fall into poor local
minima when the DNN was initialized with random weights2. The requirement for labeled
data sets was also a problem since most data is unlabeled. These two problems with DNNs,
the need for labeled training sets and ineffective training via back propagation, were largely
overcome by the groundbreaking work of Geoffrey Hinton and his colleagues in 2006 [5].
Hinton’s breakthrough was to show that unsupervised, greedy, layerwise training of DNNs
was effective in overcoming the problems with traditional back propagation training. This
is discussed in more detail in Section 3.2.

In this work we introduce the novel use of a specific form of DNN, the Stacked Autoen-
coder [12], as a platform for predicting parameters of interest for data center and service
operators, starting with congestion of important links in the data center. To demonstrate
the technique, we attack the initial problem from the perspective of modeling congestion as
a function of time of day; we call this problem the Spatial-Temporal Prediction of Traffic
Flows in Data Centers Problem. The remainder of this paper is organized as follows: Sec-
tion 2 describes the Spatial-Temporal Prediction of Traffic Flows Problem in a data center
network. Section 3 describes our methodology and reviews both autoencoder and stacked
autoencoder technology. Section 4 outlines our data sets, evaluation metrics and results.
Finally, Section 5 discusses conclusions and future work.

2 The Spatio-Temporal Prediction of Traffic Flow Problem

The Spatio-Temporal Prediction of Traffic Flow Problem is a formal description of the
question asked in the title of this document and can be stated as follows: Let Xt

i denote
the the observed traffic flow during the tth time interval at the ith observation location. An
observation location can be an interface counter, switch cpu load or memory utilization,
or other relevant sensor value (note here that we consider traditional network interface
counters to be sensors). The network topology is not explicitly represented but is rather
encoded in the observation locations. Now, given a sequence {Xt

i} of observed traffic flow
data , i = 1, 2, ...,m and t = 1, 2, ..., T , the problem is to predict the traffic flow (and hence
potential congestion) at the time (t + ∆) for some prediction horizon ∆. We also want

2The problem of non-optimal minima is a property of non-convex optimization, where local minima
aren’t necessarily global minima when the some of the DNNs parameters were initialized with random
values [3].

3

to consider the temporal relationships inherent in traffic flows, so in order to predict the
traffic flow at time interval t, we also use the traffic flow data at previous time intervals,
i.e., Xt−1, Xt−2, ..., Xt−r for some value of r (its not clear how far back in time you need
to go to get valuable predictions).

3 Methodology

In this section we introduce our basic methodology which is based on a deep-learning based
prediction model. A stacked autoencoder [16] model is used to learn generic traffic flow
features. This section reviews basic autoencoder and stacked autoencoder technology.

3.1 The Basic Autoencoder

The traditional autoencoder is an artificial neural network that attempts to reproduce its
input, i.e., the target output is the input. More formally (and following the notation of [12]),
an autoencoder takes an input vector x ∈ [0, 1]d and maps it to a hidden representation
y ∈ [0, 1]d through a deterministic mapping y = fθ(x) = s(Wx + b), parameterized by
θ = {W,b}. W is a d′ × d weight matrix, b is a bias vector and s is the sigmoid3

activation function, s(x) = 1
1+e−x . The hidden representation y, sometimes called the

latent representation, is then mapped back to a reconstructed vector z ∈ [0, 1]d, where
z = gθ′(y) = s(W′y + b′), with θ′ = {W′,b′}. This scenario is depicted in cartoon
form in Figure 1. Thus each training x(i) is thus mapped to a corresponding y(i) and a
reconstruction (of x(i)) z(i). Finally, note that the weight matrix W′ may optionally be
constrained by W′ = WT , in which case the autoencoder is said to have tied weights.
Each training example x(i) is thus mapped to a corresponding y(i) which is then mapped
to a reconstruction z(i) such that z(i) ≈ x(i).

The basic idea here is that the autoencoder is constructed in such a way that the
mapping x(i) 7→ y(i) reveals essential structure in the input vector x(i) that is not otherwise
obvious. For example, if the autoencoder has fewer hidden units than input units it must
find a representation that essentially compresses the input in such a way that it can be
efficiently reconstructed. The compressed representation has lower dimensionality than the
input and is represents an abstraction of the input. In the case of image recognition x(i)

might be an image (pixels) while y(i) might consist of edges in various orientations.
The parameters θ and θ′ of the model are optimized to minimize the average recon-

3Note that the sigmoid activation function s ”squashes” its input into the range [0, 1]

4

Figure 1: Classic Autoencoder

struction error as shown in Equation 1:

θ∗, θ′∗ = arg min
θ,θ′

1

n

n∑
i=1

L
(
x(i), z(i)

)
= arg min

θ,θ′

1

n

n∑
i=1

L
(
x(i), gθ′(fθ(x

(i))
) (1)

Here L is a loss function such as the traditional squared error L(x, z) =‖ x − z ‖22.
Note that if x and z can be interpreted as either bit vectors or vectors or probabilities (i.e.,
they are Bernoulli probability vectors), then the reconstruction cross-entropy, as defined
in Equation 2, can be used.

LH(x, z) = H(Bx,Bz)

= −
d∑

k=1

[xk log zk + (1− xk) log(1− zk)]
(2)

More generally, this methodology casts learning as optimization using Empirical Risk
Minimization [18]. The Empirical Risk R̂ is defined as

R̂(fθ, Dn) =

n∑
i=1

L
(
fθ(x

(i)), z(i)
)

(3)

5

In some cases It may be necessary to induce a preference for some values of the parameters
to avoid overfitting [4]. To avoid overfitting we can define aRegularized Empirical Risk,
where the regularization imposes a degree of sparseness on the derived encodings. Suppose
we have a training set Dn = {x(1),x(2), ...,x(n)}. Then the Regularized Empirical Risk is
defined as follows:

R̂λ(fλ, Dn) =

(
Dn∑
i=1

L
(
fθ(x

(i)), z(i)
))

+ λΩ(θ) (4)

where Ω penalizes more or less certain parameter values and λ ≥ 0 controls the amount of
regularization.

Thus learning in this setting amounts to finding optimal parameters θ∗ that satisfy
θ∗ = arg minθ R̂(fθ, Dn). However, one of the risks of using autoencoders is that the
autoencoder can potentially learn the identity function and thereby not extract useful
features from the input. This problem is especially acute if the size of the hidden layer has
the same number of units as the input layer (or more). One way to train an autoencoders
that has more hidden units than input units to learn useful features is to impose sparsity
constraints on the minimization problem [11] described in Equation 1. The effect is to
force the representations found by the hidden layers to be sparse. Such an autoencoder is
referred to as a sparse autoencoder. A popular sparsity constraint is based on the Kullback-
Leibler divergence [13]. The Kullback-Leibler Divergence DKL(P ‖ Q) can be thought of as
a measure of the information lost when probability distribution Q is used to approximate
P . For our purposes we define DKL(ρ ‖ ρ̂) as follows

DKL(ρ ‖ ρ̂) = ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

(5)

where ρ is a sparsity parameter who’s value is close to zero and ρ̂j = 1
n

n∑
i=1

s(Wx
(i)
j + b),

the average activation of hidden unit j. Putting this together with Equation 1 we get the
following optimization problem:

arg min
θ,θ′

1

n

n∑
i=1

L
(
x(i), gθ′(fθ(x

(i))
)

+ γ

HD∑
j=1

DKL(ρ ‖ ρ̂) (6)

where HD is th number of hidden units and γ is a sparsity weighting term. Kullback-
Leibler Divergence has the nice property that DKL(ρ ‖ ρ̂) = 0 if ρ = ρ̂ (and so weighting
these cases improves the sparsity of the encoding; this is the job of the γ parameter).

3.2 Stacked Autoencoders

Stacked Autoencoders (SAEs) are, as the name implies, a stack of single-level autoencoders;
hence the SAE is a deep learning model [17]. SAEs use the autoencoders described above

6

as building blocks to create a deep network [16]. While deep architectures can be more
expressive and can extract more sophisticated features from input data, until relatively
recently deep networks were thought to be too difficult to train and as such of limited utility.
As mentioned above, the breakthrough came when Geoffrey Hinton and his colleagues
showed how fast, layerwise greedy and unsupervised algorithms can be used to initialize
a slower algorithm that fine tunes the learned weights and provides very good results
on deep networks [5]. This result revitalized the machine learning community and deep
architectures been successfully applied to a wide variety of classification and prediction
problems [6].

Figure 2: Layerwise training of a Stacked Autoencoder

The basic idea behind layerwise training is shown in Figure 2. The idea here is to train
each layer as described in Equation 6. After a layer is trained, the autoencoder output
layer is discarded and the features (the y(i)) are used as the input to the next layer. Hence
the training is greedy and layerwise. Finally, the last layer in the network, usually either
a linear regression layer (if the output values are continuous) or logistic regression layer (if
the output is discrete). The final step is to fine tune the network in a supervised fashion

7

using the back propagation algorithm [15].

4 Data Sets, Performance Metrics and Model Performance

In the initial study we collect data from Ψ sensors (interfaces)4 both in the aggregation
and core layers of the data center network on 5 minute intervals for one year, yielding
105,120 samples. These sensors can be thought of as the following RFC 7223 [1] coun-
ters: speed,discontinuity-time,in-octets, in-unicast-pkts, in-broadcast-pkts, in-multicast-
pkts,in-discards,in-errors, in-unknown-protos, out-octets, out-unicast-pkts, out-broadcast-
pkts, out-multicast-pkts, out-discards,out-errors which are collected on a per-interface ba-
sis.

4.1 Congestion Computation

For purposes of this study it would be useful to have a sensor that indicated output queue
length, such as the RFC 2863 [8] ifOutQLen counter which in theory could directly measure
congestion as a function of output queue length. Given that RFC 7223 counters are not
universally implemented, RFC 2863 counters are used where RFC 7223 counters are not
available.

Note: need to compute a robust congestion statistic if I can’t get it directly e.g.,
ifOutQLen ; there is also a question as to L2 vs. L3 queues

Finally, more complex methods of estimating congestion (e.g., [14]) could be used in
future versions.

4.2 Data Dimensionality

Recall that the the problem is to measure the sequence {Xt
i} of observed traffic flow data

(the 15 parameters described above plus a timestamp) , i = 1, 2, ...,m and t = 1, 2, ..., T
and predict the traffic flow (and hence potential congestion) at the time (t+ ∆) for some
prediction horizon ∆. Here T = (60 ∗ 24 ∗ 365)/5 = 105120. Note that we also want
to consider the temporal relationships inherent in traffic flows, so to predict the traffic
flow at time interval t, we also use the traffic flow data at previous time intervals, i.e.,
Xt−1, Xt−2, ..., Xt−r for some value of r. Thus while the the exact network topology is a
hyper-parameter in this study, the model described here incorporates both temporal and
spatial correlations; the dimension d of the input data is Ψ ∗ r ∗ (15 + 1).

Note: I want to train the top layer (linear regression) on specific links of interest in the
network; we use all the data to train the SAE layers (this provides the model with both
temporal and spatial correlations (if they exist) inherently

4Ψ is dependent both on network topology and instrumentation.

8

4.3 Performance Metrics

In order to evaluate the effectiveness of the proposed model, we use three performance
indexes: Mean Absolute Error (MAE), Mean Relative Error (MRE), and the Root Mean
Squared Error (RMSE). These are defined as follows:

MAE = 1
n

n∑
i=1
|fi − f̂i|

MRE = 1
n

n∑
i=1

|fi−f̂i|
fi

RMSE =

[
1
n

n∑
i=1

(
|fi − f̂i|

)2] 1
2

where where fi is the observed traffic flow and f̂ is the predicted traffic flow.

4.4 Results

5 Conclusions and Future Work

6 Acknowledgements

9

References

[1] M. Bjorklund. RFC 7223: A YANG Data Model for Interface Management.

[2] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better. Never than late:
Meeting deadlines in datacenter networks. Proceedings of the ACM SIGCOMM, 2011.

[3] Mung Chiang. Nonconvex optimization for communication systems. Technical report,
Princeton University, 2011.

[4] Tom Dietterich. Overfitting and undercomputing in machine learning overfitting and
undercomputing in machine learning. ACM Comuting Surveys, 1995.

[5] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm
for deep belief nets. Neural Computation, 2006.

[6] http://deeplearning.net.

[7] https://angel.co/big-data analytics.

[8] K. McCloghrie and F. Kastenholz. RFC 2863: The Interfaces Group MIB.

[9] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sen-
gupta, and M. Sridharan. Data center tcp (dctcp). Proceedings of the ACM SIG-
COMM, 2010.

[10] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and M. Yasuda. Less is
more: Trading a little bandwidth for ultra-low latency in the data center. Proceedings
of the USENIX NSDI, 2012.

[11] R. B. Palm. Prediction as a candidate for learning deep hierarchical models of data,.
Technical Univ. Denmark, Palm, Denmark, 2012.

[12] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol . Ex-
tracting and composing robust features with denoising autoencoders. Technical Report
1316, Universite de Montreal, 2008.

[13] Fernando Perez-Cruz. Kullback-leibler divergence estimation of continuous distribu-
tions. Technical report, Princeton University, 2011.

[14] Shao Liu, Mung Chiang, Mathias Jourdain, and Jin Li. Congestion location detection:
Methodology, algorithm, and performance. 17th IEEE International Workshop on
Quality of Service, 2007.

[15] B Widrow. 30 years of adaptive neural networks: perceptron, madaline, and back-
propagation. Proceedings of the IEEE, 2002.

10

[16] Y. Bengio, P. Lamblin, D. Popovici and H. Larochelle. Greedy layerwise training of
deep networks. Proc. Adv. NIPS, pages 153–160, 2007.

[17] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A
review and new perspectives. arXiv.org, 2012.

[18] Yoshua Bengio, Aaron Courville and Pascal Vincent. Representation learning: A
review and new perspectives. IEEE TRANSACTIONS ON PATTERN ANALYSIS
AND MACHINE INTELLIGENCE, 2013.

11

	Introduction
	Why Artificial Neural Networks?

	The Spatio-Temporal Prediction of Traffic Flow Problem
	Methodology
	The Basic Autoencoder
	Stacked Autoencoders

	Data Sets, Performance Metrics and Model Performance
	Congestion Computation
	Data Dimensionality
	Performance Metrics
	Results

	Conclusions and Future Work
	Acknowledgements

