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1 Introduction

This note introduces the Classical Linear Regression Model (CLRM) and discusses the
assumptions underlying the model. In particular, three sets of assumptions underly the
CRLM:

1. Assumptions respecting the formulation of the Population Regression Equation (PRE)

2. Assumptions respecting the statistical properties of the random error term (ε) and
the dependent variable (X).

3. Assumptions respecting the properties of the sample data.

The Population Regression Function (PRF), depicted in Figure 1, takes the form f(Xi) =
E(Yi|Xi) = β0 + β1Xi. Here the subscript i indexes the set of observations. For each
population value Xi of X then, there is a conditional distribution of population values Y
and a corresponding conditional distribution of population random errors ε such that

• εi|Xi = Yi − E(Yi|Xi) = Yi − β0 − βiXi

• Yi|Xi = E(Yi|Xi) + εi = β0 + βiXi + εi

2 The Population Regression Equation (PRE)

Assumption A1: The first assumption we need is that the Population Regression Equa-
tion, or PRE, takes the form

Y = β0 + β1X + ε # for the population (1)

Yi = β0 + β1Xi + εi # for an individual instance (unit) i (2)
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The PRE (A1) gives the value of the regressand (dependent variable) Y for each value of
the regressor (independent variable) X. The i subscripts on Y and X are used to denote
individual population or sample values of the dependent variable Y and the independent
variable X.

Assumption A1 implies that the PRE can be written as the sum of two parts: the PRF
(E(Yi|Xi)) and a random error term (εi):

• f(Xi) = E(Yi|Xi) = β0 + β1Xi

where β0 and β1 are regression coefficients (or parameters), the true population values
of which are unknown, and Xi is the value of the regressor X corresponding to the
value Yi of Y , and 1

• εi = Yi − f(Xi) = Yi − (β0 + β1Xi) = Yi − β0 − β1Xi

where εi is a random error term (sometimes called a stochastic error term).
εi is the difference between the observed Yi value and the value of the population
regression function for the corresponding value Xi of the regressor X.

Note that the random error terms εi iare unobservable because the true population values
of the regression coefficients β0 and β1 are unknown.

The PRE (A1) incorporates three distinct sub-assumptions:

• Additive Error Term

The error term εi is additive in the PRE, which implies that ∂Yi
∂εi

= 1.

• Linearity in parameters/coefficients

This assumption means that the partial derivative of Yi with respect to each of the
regression coefficients is a function only of known constants and/or the regressor Xi;
it is not a function of any unknown parameters. That is, ∂Yi

βj
= fj(Xi), for j = 0, 1.

• Parameter or Coefficient Constancy

This assumption means that the regression coefficients β0 and β1 do not vary across
observations. That is, they do not vary with the observation subscript i. This means
that if βj,i is the value of the j-th regression coefficient for observation i, then βj,i = βi
is a constant for ∀i and j = 0, 1.

1It is quite amazing that for linear models E(Yi|Xi) = β0 + β1Xi
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Figure 1: Example Population Regression Function: f(Xi) = E(Yi|Xi) = β0 + β1Xi

2.1 Properties of the random error term εi

Assumption A2: Zero Conditional Mean Error. The conditional mean, or conditional
expectation, of the random error terms εi for any given value Xi of the regressor X is equal
to zero. That is

E[ε | X] = 0 or E[εi | Xi] = 0 ∀i (3)

This assumption is saying two things:

1. The conditional mean of the random error term ε is the same for all population values
of X; it does not depend, either linearly or nonlinearly on X.

2. The common conditional population mean of ε for all values of X is zero.

There are several implications of assumption A2. The first implication is that the un-
conditional mean of the population values of the random error term ε equals zero. That
is

E[ε | X] = 0⇒ E[ε] = 0 (4)

E[εi | Xi] = 0⇒ E[εi] = 0 (5)
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This follows from the law of iterated expectation, which states that E[E[ε | X]] = E[ε]. In
particular, since E[ε | X] = 0 by A2, we see that

E[ε] = E[E[ε | X]] # law of iterated expectation (6)

= E[0] # since E[ε | X] = 0 (A2) (7)

= 0 # since E[c] = c for constant c (8)

One way to think about this is that if the conditional mean of ε for each and every
population value of X equals zero, then the mean of these zero conditional means must
also be zero.

Another implication of A2 is that the population values Xi of the regressor X and εi of
the random error term ε have zero covariance. That is, the population values of X and ε
are uncorrelated. That is,

E[ε | X] = 0⇒ Cov(X, ε) = E[Xε] = 0 (9)

E[εi | Xi] = 0⇒ Cov(Xi, εi) = E[Xiεi] = 0 (10)

We can see this as follows:

Cov(Xi, εi) = E
[
[Xi − E[Xi]][εi − E[εi]]

]
# definition of covariance (11)

= E [Xi − E[Xi]]εi # since E[εi] = 0 by A2 (12)

= E[Xiεi − E[Xi]εi] # multiply through (13)

= E[Xiεi]− E[Xi]E[εi] # since E[Xi] is a constant (14)

= E[Xiεi] # since E[εi] = 0 by A2 (15)

= E[Xi]E[εi] # E[XY ] = E[X] · E[Y ] (16)

= 0 # since E[εi] = 0 by A2 (17)

A third implication of A2 is the conditional mean of the population Yi values corresponding
to a given value Xi of the regressor X equals the population regression function (PRF)
f(Xi) = β0 + β1Xi. This itself has a key implication, namely, that

E(ε | X) = 0⇒ E(Y | X) = f(X) = β0 + β1X and (18)

E(εi | Xi) = 0⇒ E(Yi | Xi) = f(Xi) = β0 + β1Xi ∀i (19)

The proof of this is fairly simple. Recall that by assumption Yi = β0 + β1Xi + εi for
i = 1 . . . N . Then
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Yi = β0 + β1Xi + εi # Linear assumption, A1 (20)

E[Yi|Xi] = E[β0 + β1Xi + εi|Xi] # Expectation conditioned on Xi (21)

= E[β0 + β1Xi|Xi] + E[εi|Xi] # E[X + Y |Z] = E[X|Z] + E[Y |Z] (22)

= E[β0 + β1Xi|Xi] # E[εi|Xi] = 0 by A2 (23)

= E[β0|Xi] + E[β1Xi|Xi] # E[X + Y |Z] = E[X|Z] + E[Y |Z] (24)

= β0 + E[β1Xi|Xi] # E[β0|Xi] = β0 for constant β0 (25)

= β0 + E[β1|Xi]E[Xi|Xi] # E[XY |Z] = E[X|Z] · E[Y |Z] (26)

= β0 + β1 E[Xi|Xi] # E[β1|Xi] = β1 for constant β1 (27)

E[Yi|Xi] = β0 + β1Xi # E[Xi|Xi] = Xi (28)

Note that in Equation 26 X and Y (β1 and Xi) are assumed to be independent.

An amazing result really. But what we really want to do is estimate the population
parameters β0 and β1. How do we do that? To get there we will need some more machinery.
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