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1 Introduction

Inferring the causal structure of a set of random variables from a finite sample of the joint distri-
bution is an important problem in science. One way to think about causal structure is that when
we observe the world, we are really observing some joint distribution P (X1,… , Xn). However, we
don’t really know which of the Xi’s are "causes" and which are "effects" other than that some set
of the Xi’s is the effected variable Y ; the Xi’s are sometimes called "treatment variables" and Y is
called the "response variable".

Unfortunately these cause/effect relationships aren’t represented in non-interventional data. To un-
derstand these relationships we need what is called a Markov (or causal) graph. A graphG is called
Markov if it is a DAG and for a given node in the graph, that node is conditionally independent of
its non-descendants given its parents. That is, xj ⟂⟂ ndj ∣ paj , where ndj are the non-descendants
of xj in G and paj are the parents of xj in G. Said another way, the joint distribution p(x1,… , xn)
factorizes:

p(x1,… , xn) =
n
∏

j=1
p(xj ∣ paj)

The semantics are that the parents paj of xj in G are xj’s direct causes.

A perhaps more abstract way to think about the Markov condition is that given all the direct causes
of an observable O, its non-effects provide no additional information on O [1]. The underlying
idea here is that "nature chooses" the conditional distributions p(xj ∣ paj) independently from one
another, since the generation of additional independencies (that is, independencies are not imposed
by the structure of the DAG) would require tuning between these conditional distributions [1].
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If we do have a such a graphG, can we say anything about the associations (statistical relationships)
implied by G? We might think about these associations, that is, the statistical relationships that we
observe, more as a bundle of different kinds of associations, some of whichmay be causal and others
which are spurious (non-causal). The goal of causal identification is to eliminate all the non-causal
associations (which turn out to be paths in G), leaving only the causal relationships, if any. Figure
1 is a cartoon of this situation.

Figure 1: Associations, joint distributions, and bias

2 Forms of Bias

2.1 Causality

Causality in a Markov graph is represented by a chain structure in which all the arrows are pointing
in the same direction (the direction of "time"); this is shown in Figure 3. A bit of notation: Two
real-valued random variables A and B are said to be conditionally independent given C , written
A ⟂⟂ B ∣ C , if ∀A,B P (A,B ∣ C) = P (A ∣ C)P (B ∣ C) and for ∀C P (C) > 0. Note that
conditional independence neither implies nor is implied by independence. That is, there are A,B
and C such that we have only independence or only conditional independence.

In our example, we have A ̸⫫ B and A ⫫ B ∣ C , that is, A is not independent of B (because A
causes B), but conditioning1 on C renders A independent of B. This is called Overselection Bias
because you conditioned on a node in the chain, resulting in independence (A ⫫ B ∣ C) when in
reality A and B are causally related (A ̸⫫ B). The solution to Overslection Bias is not to condition
on a node in the chain (here C).

1Conditioning can be as simple as marginalizing out C .
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Figure 2: Forms of Bias

2.2 Confounding

A confounder is a (possibly hidden) common cause in a Markov graph. This is shown in Figure 4.
The basic idea here is that there is non-causal path in the graph that is transmitting an association.
Here A seems to be causally related to B (A ̸⫫ B) due to this association. However, if we remove
the non-causal path by conditioning on the confounder C , we see that A doesn’t really cause B
(A ⫫ B ∣ C). This bias is called Confounding Bias or sometimes just Confounding. A general
solution to Confounding is to condition on the common cause (C). Essentially Confounding bias
arises from the failure to condition on a common cause.

One of the most famous examples of confounding involves the eminent statistician R.A. Fisher, who
claimed (among other things) that the presence of a confounder meant that one couldn’t conclude
that there was a causal link between smoking and lung cancer [2]. This is shown in Figure 5.

Figure 3: Causality (chain): A ̸⫫ B and A ⫫ B ∣ C

3



Figure 4: Confounding (common cause): A ̸⫫ B and A ⫫ B ∣ C

2.3 Endogenous Selection

The structure of the graph representing Endogenous Selection is shown in Figure 6. You can see
how Endogenous Selection Bias comes about in the following classic example [3]: Consider the
following causal model for the relationships between productivity, A, originality, B, and academic
tenure, C . C here is called a "collider". Now, suppose that productivity and originality are unas-
sociated in the general population (i.e., productivity does not cause originality and originality does
not cause productivity (i.e. A ⟂⟂ B), and productivity and originality do not share any common
cause). Suppose further that originality and productivity are separately sufficient for promotion to
tenure. In this case, tenure is a collider variable.

Now if you condition on tenure (the collider, C) then you are assessing the relationship between
originality and productivity only among tenured faculty (showing that Endogenous Selection Bias
subsumes Sample Selection Bias [4]). In this case knowing that an unoriginal scholar has tenure
implies that he must have been productive. Conversely, knowing that an unproductive scholar has
tenure implies that he must have been original. In either case conditioning on the collider tenure
(C) creates an association between productivity (A) and originality (B) among tenured faculty, even
though one does not cause the other. This form of bias is called Endogenous Selection Bias and is

Figure 5: R. A. Fisher, smoking, lung cancer and confounding
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Figure 6: Endogenous Selection (common outcome): A ⫫ B and A ̸⫫ B ∣ C

closely related to Berkson’s paradox [5] and "explaining away" [6].

Perhaps surprisingly, in Endogenous Selection Bias A and B are independent (A and B don’t cause
one another, A ⫫ B), but conditioning on (knowing) C induces a relationship between A and B
that doesn’t exist in the population. That is, A ̸⫫ B ∣ C . The solution here is not to condition on
a collider (or any node downstream of the collider). Endogenous selection bias results from the
mistaken conditioning on a common effect.

3 d-separation

Finally, can you read any of these relationships directly off the graph? In certain situations the
answer is yes. The rule we use for this, called d-separation, is due to Pearl [7]. Pearl describes
d-separation as a "gift from the gods" since it allows us to deduce properties of the statistical dis-
tribution (associations) from the causal graph. Of course, in order to do this, you need the causal
graph. So where does the causal graph come from? That is a whole different issue, but suffice
it to say that nature doesn’t reveal causal structure in non-interventional data, so we have to get it
somewhere else. Discovering the causal graph (or other representation) is called causal discovery.
In causal discovery (also called structure learning) we’re trying to reconstruct the structural causal
model or its graphical representation from its joint distribution p(X1,… , Xn).

In general, we would like to ask the question: Under what assumptions on the data generating
process can one infer the causal graph from the joint distribution? There is pretty vast literature
here. One place to start might be [8].
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