Latent Dirichlet Allocation
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Topic Modeling

 Methods for automatically organizing,
understanding, searching and summarizing

categorical data

eollection of&/ﬁdo&w&

* Goals
* Uncover hidden topical patterns

* Annotate documents according to topics
* Organize, Summarize, Search



A Bit of Information Retrieval (IR) Terminology

* Corpus: is a large and structured set of texts

» Stop words: words which are filtered out before or after processing
of natural language data (text)

* Unstructured text:information that either does not have a pre-
defined data model or is not organizedin a pre-defined manner.

* Tokenizing: process of breaking a stream of text up into words,
phrases, symbols, or other meaningful elements called tokens (see
alsolexical analysis)

* Natural language processing: field of computer science, artificial
intelligence, and linguistics concerned with the interactions
between computers and human (natural) languages

* Term document (or document term) matrix: is a mathematical
matrix that describes the frequency of terms that occurin a
collection of documents

* Supervised learning: s the machine learning task of inferring a
function from labeled training data

* Unsupervised learning: find hidden structure in unlabeled data

* Stemming: the process for reducing inflected (or sometimes
derived) words to their word stem, base or root form—generallya
written word form
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Aside: We Know Machines Are Getting
Smarter, But Where Does Knowledge
Come From?

Evolution Experience

Many orders of magnitude
fasterandlarger

Culture Machines

AN
N \
‘Q\S‘a\




Ok, But How Can Machines Discover
New Knowledge?

Fill the gaps in existing knowledge

— Symbolists
— Technology: Induction/Inverse Deduction

Emulate the brain

— Connectionists

— Technology: Deep neural nets These correspond to the 5 major
AT IR schools of thought in machine
— Evolutionaries lea rning

— Technology: Genetic Algorithms

Systematically reduce uncertainty
— Bayesians
— Technology: Bayesian Inference

- Notice similarities between old and new
— Analogizers
— Technology: Kernel machines/Support Vector Machines
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Parametric vs. Non-parametric Models

Parametric models assume some finite set of parameters . This means that given
parameters 8, future predictions x are independent of the data D. That is:

* p(x|6,D) = p(x|6)

This implies that 6 captures everything there is to know about the data

Also means that the complexity of the model is bounded even if the amount of data isn’t

Taken together these factors make parametric models inflexible

Information theoretic view

Information is constrained to flow from the prior through finite 6 to the posterior

likelihood - prior

Remembering that the posterior = :
evidence

_ p(x0)-p(® _ px6) _  px8)
pOlx) = p(x) T op(x)  [p(x0)d6

http://www.1-4-5.net/~dmm/ml/ps.pdf

Latent Dirichlet Allocation is a parametric model (why?)



Non-Parametric Models

Non-parametric models assume that the data distribution cannot be
defined in terms of such a finite set of parameters

Parameters can often be described using an infinite dimensional 6
— Think of 8 as a function

The amount ofinformationthat 8 can capture aboutthe data Dcan grow
as the amount of data grows

This makes non-parametric models more flexible
— Better predictive performance
— More “realistic”
— Most successful ML models are non-parametric

Examplesinclude

— Kernel methods (SVMs, GPs)
— DNNs

— K-NNs, ...
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Latent Dirichlet Allocation (LDA)

Generative probabilistic model

— Parametric Bayesian Probabilistic Graphical Model

— Treats data as observations

— Contains hidden variables

— Hidden variables reflect thematic structure of the collection

— Wealth of material here:
« https://www.cs.princeton.edu/~blei/topicmodeling.html

Approach: Infer hidden structure using posterior inference
— Discovering topics in the collection using Bayesian inference

Placing new data into the estimated model
— Situating new documents into the estimated topic structure

Other Approaches
— Latent Semantic Indexing (LSI)
— Probabilistic Latent Semantic Indexing (pLSl)



LDA Basic Intuition

http://ai.stanford.edu/~anqg/papers/nips01-lda.pdf
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Graphic courtesy David Blei https://www.cs.princeton.edu/~blei/kdd-tutorial.pdf
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Obvious Questions

What exactly is a topic?
Where do topics come from?
How many “topics”/document

Simple Intuition:
* Documents exhibit
multiple topics
* Contrast “mixture”
models



LDA Generative Model

Hallucinate that the observed data were generated this way

Topic proportions and

Topic. Document ;
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* Assume topics exists outside of the document collection
* Eachtopic is a distribution over fixed vocabulary
* Eachword is drawn from one of those topics
* Eachdocument isarandom mixture of corpus-wide topics

Graphic courtesy David Blei https://www.cs. princeton.edu/~blei/kdd-tutorial. pdf




BTW, What Do We Actually Observe?

. Topic proportions and
Topics Documents PeP .p
assignments
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* So our goal here is to infer the hidden (latent) variables
* i.e., compute their distribution conditioned on the documents:
p(topics, proportions, assignments | documents)

Graphic courtesy David Blei https://www.cs.princeton.edu/~blei/kdd-tutorial.pdf
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number  0.02
computer 0.01

Topic proportions and
assignments

Documents

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK

How man

—

Let K be the number of topics (distributions over words)
For each document d in corpus C:

Draw the topic proportion distribution 84 for document d
For each n = 1..Ng:

Draw topic index z4, for the nt" word of d from 64
Draw word wy , from topic [z ]

# B1x ~ Dir(n)

# B4~ Dir(a)

# Ny =# words in d
#1< z4, <K

# 24 Indexes Bk
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Probabilistic Graphical Models

-

e Nodes are random variables
e Edges denote possible dependence
e Observed variables are shaded

e Plates denote replicated structure

Graphic courtesy https://www.cs.princeton.edu/~blei/kdd-tutorial. pdf




Probabilistic Graphical Models, Cont

e Structure of the graph defines the pattern of conditional dependence
between the ensemble of random variables

e E.g., this graph corresponds to

N
ply, x1,- -, xn) = p(y) [ [ p(xn | y)
n=1

Graphic courtesy https://www.cs.princeton.edu/~blei/kdd-tutorial. pdf




LDA Graphical Model

(based on the generative model)
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Each piece of the structure is a random variable.

Graphic courtesy https://www.cs.princeton.edu/~blei/kdd-tutorial.pdf




LDA Graphical Model Details

OO OO

& Oi | Zin Wain N I N

e From a collection of documents, infer

e Per-word topic assignment z4 ,
e Per-document topic proportions 64
e Per-corpus topic distributions [y

e Use posterior expectations to perform the task at hand, e.g.,
information retrieval, document similarity, etc.



What is the LDA Joint Distribution?

Per-word

Proportions . .
topic assignment

parameter
Per-document Observed . Topic
topic proportions word Topics  parameter

L |
OO @ OO

o Od Zan Wan B ,
N D K

p(B,0,2,w) = ([[p(ﬁ,-m)) ([[p(ed|a)1jp(zd,n|ed)p(wd,nmm,zd,n))



Why does wy , depend on z; , and B?

V x K Topic Matrix

Columns are the B,s

-- number of topics

-- number of words in the vocabulary

-- topic matrix
-- index of topic which W, , comes from

-- the nt" word in the dth document

-- the probability of Wy ., Bx[wg.n] (K =24,)




Now, What Exactly is the Dirichlet Distribution

(and why are we usingit?)

_ F(Zle ;) k a;—1
p(@\a) - H§:1 I—(ai) Hi:]. 92

The Dirichlet is a “dice factory”
* Multivariate equivalent of the Beta distribution (“coin factory”)
* Parametersa determine the form of the prior

The Dirichlet is defined over the (k-1) simplex
* The k non-negative arguments which sum to one

The Dirichlet is the conjugate prior to the multinomial distribution
* Ifthe likelihood has conjugate prior P then the posterior has the same form as P
* If we have a conjugate prior we know the (closed) form of the posterior
* So in this case the posterior is also a Dirichlet

The parameter a controls the mean shape and sparsity of 8

In LDA the topics are a V-dimensional Dirichlet and the topic proportions are a K-dimensional Dirichlet



Simplex?

(space of non-negative vectors which sum to one)

p(w;)

e the highest value inp(w|z,) = B,

topic proportions of a document, p(z|d) = 6,
(multinomial distribution)

Dirichlet distribution, ex) Dir(0.6,0.5,0.7)

p(w;)



Aside: Conjugate Priors

Likelihood Prior Posterior

f(y|0) () (0|y)
Normal Normal Normal

N(6,0%) N (p,7?) N(Zime, 22
Poisson Gamma Gamma

Poisson(8) ', B) Na+y,8+1)
Gamma Gamma Gamma

(v, 0) e, B) Na+v,B+y)
Binomial Beta Beta

Bin(n, #) Beta(a, 3) Beta(a +y,8+n —y)
Multinomial Dirichlet Dirichlet

My(6y,...,6) D(ay,...,ar) D(a; +y1,..., 0 + Yi)
Normal Gamma Gamma

N(u,1/6) I(a, 8) (a+3,6+ 3 (1—1v)?)

Notes/Issues:

* Conjugate Prior: If the likelihood has conjugate prior P then the posterior has the same form as P
* The conjugate prior might not correctly reflect our uncertainty about 6

* Non-conjugate priors are typically not available in analytic (closed) form

* ltis difficult to quantify our uncertainty about 8 in the form of a particular distribution
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The Effect of the Dirichlet parameter «

Generalizing the Idea of Co-Occurrence

Varying a

Number of words per topic
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Ok, but we need the Posterior

e For now, assume the topics (7. are fixed.
The per-document posterior is

p(0| @) [TV P(zn | 0)P(Wn | Zn, B1.k)
fo p(f ) Hr,:l:1 25:1 p(zn | 0)p(wn | zn, 1K)

e This is intractable to compute

e Itis a “multiple hypergeometric function” (see Dickey, 1983)

e Can be seen as sum of NX (tractable) Dirichlet integral terms

So we need to use approximate inference



Approximate Inference
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We appeal to approximate posterior inference of the posterior,

p(0|a) HII:I:], p(zn | 0)p(Wn | Zn, B1:k)

fo p(6]a) Hrlyzl 25:1 p(zn | 0)p(wWhn | zn, B1:k)

e Gibbs sampling

e Variational methods

e Particle

filtering



Variational Inference

Variational methods are a deterministic alternative to MCMC.
Let x7.y be observations and z;.ps be latent variables
Our goal is to compute the posterior distribution

p(zleaxlzN)
(ZI:MaXI:N)dZI:M

p(zl:M |X1:N) — fP

For many interesting distributions, the marginal likelihood of the
observations is difficult to efficiently compute



Jensen’s Inequality

f@f
E[f(x)]
1(b)
TEXDT

® ® ®
a E[X] b
Jensen's inequality generalizes the observation that the secant line of a convex

function lies above the graph of the function

In probability theory Jensen’s Inequality is generally stated in the following form: If X
is a random variable and @ is a convex function, then @(E[X]) < E[¢(X)]



Jensen’s Inequality, Bounds, and KL Divergence

e Use Jensen's inequality to bound the log prob of the observations:

log p(x1:n) |°g/P(21:MaX1:N)d21:M

qu(zl:M)
= lo / Z1:M, X1 dzi.
& p( BV AL N) qu(ZI:M) =M

Z Equ [|0g p(zl:Ma Xl:N)] _ qu/ [|0g ql/(zle)]

e We have introduced a distribution of the latent variables with free
variational parameters v.

e We optimize those parameters to tighten this bound.

This is the same as finding the member of the family g, that is
closest in KL divergence to p(z1.p | x1:n)-



KL-Divergence
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divergence

KL[q||p]




Why Does LDA Work?
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e LDA trades off two goals

@ In each document, allocate its words to few topics.
@ In each topic, assign high probability to few terms.

e We see this from the joint

logp(:) = ...+ D¢ ,109 p(Zan | Ba) + log p(Wan | Bzy) + - - -

e Sparse proportions come from the 1st term.
Sparse topics come from the 2nd term.



Why Does LDA Work?

t-OFO—-@ IO
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e LDA trades off two goals

@ In each document, allocate its words to few topics.
@ In each topic, assign high probability to few terms.

e These goals are at odds.

» Putting a document in a single topic makes #2 hard.
e Putting very few words in each topic makes #1 hard.

¢ Trading off these goals finds groups of tightly co-occurring words.



LDA Summary
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o LDA can
» visualize the hidden thematic structure in large corpora

» generalize new data to fit into that structure

» Builds on Deerwester et al. (1990) and Hofmann (1999)
It is a mixed membership model (Erosheva, 2004).
Relates to multinomial PCA (Jakulin and Buntine, 2002)

o Was independently invented for genetics (Pritchard et al., 2000)



Agenda

Probabilictic Graphical-Model
The &  the Birichl
* Dynamic LDA

* Q&A



Beyond LDA: Dynamic Topic Models
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Topics drifting in time

Graphic courtesy https://www.cs.princeton.edu/~blei/kdd-tutorial. pdf




Q&A

Thanks!



