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1 Introduction

The Strong Law of Large Numbers (LLN) is usually stated as follows:

Let x1, x2, . . . , xM be a sequence of independent and identically distributed (i.i.d) random
variables, each having a finite mean µi = E[xi].

Then with probability one

1

M

M∑
i=1

xi → E[x] (1)

as M →∞.

A complementary theorem, Ergodic Theorem, is stated as follows: Let θ(1), θ(2), . . . , θ(M)

be M samples from a Markov chain that is aperiodic, irreducible, and positive recurrent1,
and E[g(θ)] <∞.

Then with probability one

1

M

M∑
i=1

g(θi)→ E[g(θ)] =

∫
Θ
g(θ) π(θ) dθ (2)

as M →∞ and where π is the stationary distribution of the Markov chain.

1In this case, the chain is said to be ergodic.
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2 The LLN and Likelihood Ratio Policy Gradients

Suppose that r(x) is a performance measure that depends on some random variable X,
and q(x; θ) is the is the probability that X = x, parameterized by θ ∈ RK . Under mild
regularity conditions, the gradient with respect to θ of the expected performance η(θ) can
be seen to be the following:

η(θ) = Ex∼q(xlθ)[r(x)] # definition of η(θ) (3)

=
∑
x

r(x) · q(x; θ) # definition of expectation (4)

∇η(θ) =
∑
x

r(x)∇θq(x; θ) # take the derivative of both sides (5)

=
∑
x

r(x)
∇θq(x; θ)

q(x; θ)
q(x; θ) # multiply by 1 =

q(x; θ)

q(x; θ)
(6)

= Ex∼q(x;θ) r(x)
∇θq(x; θ)

q(x; θ)
# definition of expectation (7)

So our gradient ∇θη(θ) = Ex∼q(x;θ) r(x)∇θq(x;θ)
q(x;θ) , which means we can estimate the expec-

tation (gradient) with

η̂(θ) =
1

N

N∑
i=1

r(x)
∇θq(x; θ)

q(x; θ)

Now, given the law of large numbers we know

η̂(θ)→ η(θ) with probability one

This means our gradient estimator (η̂(θ)) is unbiased since its expected value equals the
true gradient. Specifically:

E[η̂(θ)] = ∇η(θ) (8)
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