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1 Introduction

One of the interesting things about machine learning is that it affords many different ways
to look at the same data and hence underlying phenomena (aside: why exactly should this
be?). For example, the Logistic Function is really a special case of a Conditional Random
Field and PCA is a special case of a Linear AutoEncoder (with no regularization). This
document looks at a different correspondence. Here well look at why minimizing error
(a sum), maximizing probability (a product), and minimizing energy (in an energy based
model, for example, a Restricted Boltzmann Machine) are all really the same thing. Note
that this document is likely to have many errors.

2 Minimizing Cost is a Sum

2.1 Linear Regression Cost Function

For linear regression, our hypothesis hθ(x) = g(θTx), where g(z) = z and x and θ are
N× 1 column vectors (hence θT is a 1×N row vector)1:

1While g(z) is linear here, in other models g can be a non-linearity such as the sigmoid function.
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x =


x1
x2
...
xn



θ =


θ1
θ2
...
θn



θT =
[
θ1, θ2, · · · , θn

]
which implies that

θTx =
[
θ1, θ2, · · · , θn

]
x1
x2
...
xn

 =

n∑
i=1

θixi = θ1x1 + θ2x2 + · · ·+ θnxn (1)

Note that Equation 1 is the algebraic interpretation of the dot product of θT and x (also
called the inner or scalar product). An alternate, geometric interpretation of the dot
product in Euclidian space, where a geometrical object possesses both a magnitude and a
direction is

θTx = ‖θT ‖‖x‖ cos(α) (2)

where α is the is the angle between the vectors θT and x, and ‖θT ‖ and ‖x‖ are the mag-
nitudes of the vectors θT and x respectively (that is, the L2-norm2). Note that Equation
2 implies that

cos(α) =
θTx

‖θT ‖‖x‖
=

n∑
i=1

θixi√
n∑
i=1

(θTi )2 ×
√

n∑
i=1

(xi)2

(3)

2The general form of the p-norm is ‖x‖p =

(
n∑
i=1

|xi|p
) 1

p
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which is also known as the cosine similarity between θT and x[1].

Getting back to our hypothesis, we see that hθ(x) = g(θTx) = θ0+θ1x1+θ2x2+ . . .+θnxn.
Note that by convention θ0 is treated specially; in particular, it is not part of the vector θ.
Now, given this hypothesis, our cost function can be written as a sum:

J(θ) =
1

n

n∑
i=1

(hθ(x
(i))− y(i))2 (4)

The goal of machine learning then is to find the parameters θ such that loss/error function
J(θ) is minimized (note that which error is minimized, and when, is a topic unto itself).
For linear regression, Equation 4 is a convex optimization objective.

2.2 Logistic Regression Cost Function

For logistic regression, our hypothesis hθ(x) is slightly different, as shown in Equations 5,
6 and 7.

hθ(x) = g(θTx) (5)

Here g(z) is the logistic or sigmoid function3, and is defined as follows

g(z) =
1

1 + e−z
(6)

Putting Equations 5 and 6 together we get

hθ(x) = g(θTx) =
1

1 + e−θ
Tx

(7)

While it seems like we could perhaps use the same loss function as we did in linear regression
(Equation 4), it turns out that this loss function is non-convex when applied to logistic
regression, i.e., when g(z) = 1

1+e−z . As as result we typically use some version of cross-
entropy as the loss function:

J(θ) =
1

n

[
n∑
i=1

y(i) log hθ(x
(i)) + (1− y(i)) log(1− hθ(x(i))))

]
(8)

The regularized version of Equation 8 is

J(θ) =
1

n

[
n∑
i=1

y(i) log hθ(x
(i)) + (1− y(i)) log(1− hθ(x(i))))

]
+

λ

2n

n∑
j=1

θ2j (9)

3BTW, the logistic function is a special case of a Conditional Random Field
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2.3 Deriving the Loss/Error function for Logistic Regression

Recall that this loss function linear regression was

J(θ) =
1

n

n∑
i=1

(hθ(x
(i))− y(i))2 (10)

and that this loss function was a non-convex optimization objective for logistic regression.
To find a convex loss function for logistic regression we first define a Cost function:

Cost(hθ(x
(i)), y(i)) = (hθ(x

(i))− y(i))2 (11)

so that

J(θ) =
1

n

n∑
i=1

Cost(hθ(x
(i)), y(i)) (12)

Now we can ask what our Cost function look like. Well, if we predict 1 and y = 1, the the
cost should be close to 0 (because we predicted the right value). Alternatively, if we predict
0 and y = 1, then the cost should converge on ∞ (that is, we penalize the prediction). On
the other hand, if we predict 0 and y = 0, the the cost should again be close to close to 0
as we predicted the right value. Similarly, if we predict 1 and y =, the cost should again
converge on ∞. These two cases are captured in Equation 13.

Cost(hθ(x), y) =

{
− log(hθ(x)) if y = 1

− log(1− hθ(x)) if y = 0
(13)

Note that if you combine the two cases in Equation 13 together, you get Equation 8, the
cross entropy.

In any event, in both cases we fit the parameters θ to the model by minimizing a sum
such as Equation 4 or 8.

3 Maximizing Probability is a Product

Basic assumption: all of this analysis depends on the assumption, as you will see, that
the error ε(i) is Gaussian, so Danger Will Robinson!4 That said, assume that the target
variables and the inputs are related via the equation

y(i) = θTx(i) + ε(i) (14)

4In reality it could be any parametric distribution. In this case I know what the simplifying assumptions
are/mean so I can write the density down.
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and thus
e(i) = y(i) − θTx(i) (15)

where ε(i) is an error term that captures either unmodeled effects (such as if there are
some important features that we left out of the model, or just random noise). Interestingly
this is intuitive as ε(i) = y(i) − θTx(i). Assume also that the ε(i)’s are IID (Independent
and Identically Distributed) according to some Gaussian distribution with mean µ = 0
and variance σ2, i.e., N (0, σ2) (note that this argument also relies on the Central Limit
Theorem and the Law of Large Numbers [2]). We typically use the notation X ∼ N (µ, σ2)
to indicate that the random variable X is normally distributed with mean µ and variance
σ2 (note that if X ∼ N (0, 1) we say that X follows the standard normal distribution).

The general form of the probability density function (pdf) of N (µ, σ2) is5

P (x) = f(x | µ, σ) =
1√

2πσ
exp

[
− (x− µ)2

2σ2

]
, −∞ < x <∞ (16)

Here µ = E[X], i.e., the mean (and mode), σ2 = var[X], and
√

2πσ2 is a normalization
constant that ensures that the density f integrates to 1.

Now, assuming e(i) ∼ N (0, σ2), we can write the density of ε(i) as6:

p(ε(i)) =
1√

2πσ
exp

[
− (ε(i))2

2σ2

]
(17)

so that

p(y(i) | x(i); θ) =
1√

2πσ
exp

[
− (y(i) − θTx(i))2

2σ2

]
(18)

Rewriting this in vector/sum notation

p(y|X,θ, σ) = (2πσ2)−n/2exp

[
− 1

2σ2

n∑
i=1

(y(i) − θTx(i))2
]

(19)

5exp(x) is defined to be ex
6We can always ”normalize” our data so that µ = 0 by computing the z score, z = x−µ

σ
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and taking advantage of the fact that the sum of exponential powers is product of expo-
nentials7 we get

p(y|X,θ, σ) =

n∏
i=1

(2πσ2)−1/2exp

[
− 1

2σ2
(y(i) − θTx(i))2

]
(20)

Note that the likelyhood of a set of parameter values θ given outcomes x is equal to the
probability of those observed outcomes given those parameter values, that is

L(θ | x) = P (x | θ) (21)

In the discrete case
L(θ | x) = pθ(x) = Pθ(X = x) (22)

Thus we can see that Equation 20 is essentially the likelihood of θ given X, and can be
rewritten as

L(θ) =

n∏
i=1

p(y(i) | x(i); θ) (23)

which familiarly implies

L(θ) =
n∏
i=1

1√
2πσ

exp

[
− (y(i) − θTx(i))2

2σ2

]
(24)

That is, maximizing the likelihood is a product. Going the other way, maximizing the log
likelihood `(θ) gives

`(θ) = logL(θ) (25)

= log

n∏
i=1

1√
2πσ

exp

[
− (y(i) − θTx(i))2

2σ2

]
(26)

=

n∑
i=1

log
1√
2πσ

exp

[
− (y(i) − θTx(i))2

2σ2

]
(27)

= n log
1√
2πσ

− 1

σ2
· 1

2

n∑
i=1

(y(i) − θTx(i))2 (28)

Hence maximizing `(θ) gives the same answer as minimizing

1

2

n∑
i=1

(y(i) − θTx(i))2 (29)

7a(b+c) = ab × ac
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which turns out to be the original least squares cost function J(θ) (Equation 4).

4 Minimizing Energy

So we’ve seen that minimizing error (a sum) is roughly equivalent to maximizing the prob-
ability (or likelihood), a product. It turns out that minimizing energy in a physical system
such as a system of springs is the same thing! In this section we’ll look at minimizing energy
functions such as used by Restricted Boltzmann Machines (RBMs). Energy-based proba-
bilistic models (e.g., RBMs) define a probability distribution through an energy function,
as follows:

p(x) =
e−E(x)

Z
(30)

where the normalizing factor Z, called a partition function and is typically computationally
intractable. Z is defined as follows

Z =
∑
i=1

e−E(x) (31)

Using these definitions we can write the expression for the likelihood L of θ and D as

L(θ,D) =
1

N

∑
x(i)∈D

log p(x(i)) (32)

`(θ,D) = −L(θ,D) (33)

which we can minimize using stochastic gradient descent (SGD) where the gradient is

−∂ log p(x(i)

∂θ and θ are the model parameters.
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