
Notes on MSE Gradients for Neural Networks

David Meyer

dmm@{1-4-5.net,uoregon.edu,...}

April 21, 2017

1 Introduction

2 Mean Squared Error (MSE)

First, notation: scalars are represented in regular math font, e.g., yi, where vectors are in
bold, e.g., xi. Given these definitions we can define our labelled data or training examples
as a set of n tuples where the ith tuple has the form (xi, yi), where xi ∈ Rn is a vector of
inputs and yi ∈ R is the observed output.

Ideally our neural network should output yi when given xi as an input. Of course, during
training this doesn’t always happen so we need to define an error or cost function that
quantifies the difference between the actual observed output and the prediction of the
neural network. A simple measure of the error is the Mean Squared Error, or MSE. We
define the MSE as follows:

E :=
1

m

m∑
i=1

(h(xi)− yi)2 (1)

where h(xi) is the output of the neural network.

3 Basic Building Blocks: Perceptrons

The simplest classifiers out of which we will build our neural network are perceptrons [1].
In reality, a perceptron is a linear classifier. A perceptron takes an input vector x which is
multiplied pairwise by a weight vector w, then sums the products up together with a bias
term b. This sum (the dot product, Equation 3) is then fed through an activation function

1

σ : R,R. This is depicted in Figure 1. Note here that w0 = b and a0 = 1; I like Figure 1
but I will use the more conventional x for the input vector rather than a as is used in the
figure. The behavior of the perceptron can then be described as σ(w · x), where w and x
have the following form1:

w =


w1

w2
...
wn



x =


x1
x2
...
xn



wT (w transpose) is defined to be

wT =
[
w1, w2, . . . , wn

]
The dot product between w and x, w · x, is defined as

w · x = wTx =
[
w1, w2, · · · , wn

]

x1
x2
...
xn

 =
n∑

i=1

wixi = w1x1 + w2x2 + . . .+ wnxn

Note that the weight vector, w will be a M ×N matrix if there is more than one layer of
artificial neurons.

The last piece of the puzzle are the kinds of activation functions2 that σ might be:

• Sigmoid: σ(x) = 1
1+e−x

• Hyperbolic tangent: σ(x) = tanh(x)

1Again noting that a in Figure 1 is frequently called x, the input vector; I’ll use x here.
2Activation functions are sometimes called link functions in a Generalized Linear Model setting.

2

Figure 1: Basic Perceptron/Linear Classifier

• Linear: σ(x) = x

• Rectified Linear Unit: σ(x) = max(0, x)

• Exponential Linear Unit: σ(x) =

{
x if x ≥ 0
a(ex − 1) otherwise

• ...

4 Building a Single Layer Neural Network

So far we’ve defined the error E as the MSE, namely, E := 1
m

m∑
i=1

(h(xi)− yi)2. Here both

the error and the output of the network (hw(xi) = σ(w · xi)) depend on the weight vector
w. We write the error function, parameterized by w, as

E(w) :=
1

m

m∑
i=1

(hw(xi)− yi)2 (2)

Now, our goal is to find a weight vector w such that E(w) is minimized. In effect this
means that the perceptron will correctly predict the output for the inputs in the training
set. Of course, we want the perceptron to generalize, so that it makes correct predictions
on the test set and on new examples. But how to do this minimization?

We do the minimization by applying the gradient descent algorithm. In effect we will treat
the error as a surface in n-dimensional space and search for the greatest downwards slope
at the current point wt and will go in that direction to obtain wt+1. Following this process
we will hopefully find a minimum point on the error surface and we will use the coordinates

3

Figure 2: Non-Convex Error Surface

of that point as the final weight vector3. In any event, the update rule can be stated as
follows (in both partial derivative and gradient notations):

wt+1 := wt − η
∂E(w)

∂w
partial derivative notation (3)

wt+1 := wt − η∇wE(w) # gradient (nabla) notation (4)

where η is the learning rate. Now, notice that the gradient of E on w is

∇wE(w) =
∂E(w)

∂w
=

[
∂E(w)

∂w0
,
∂E(w)

∂w1
, · · · , ∂E(w)

∂wn

]
(5)

Now we can calculate the gradient, ∇wE(w). We start by calculating ∂E(w)
∂wj

for each j. So

first.... Note that the chain rule states that if h(x) = f(g(x)) then the derivative dh(x)
dx =

h′(x) = f ′(g(x))g′(x). We will also use the power rule: If y = un, then dy
dx = nun−1 dudx . So

3Consider, however, the situation in which the error surface is non-convex, such as is in Figure 2.

4

the partial derivative ∂E(w)
∂wj

can be computed as follows: So for example element of the

gradient 0 ≤ j ≤ n

∂E(w)

∂wj
=

∂

∂wj

1

m

m∑
i=1

(hw(xi)− yi)2 # definition of E (6)

=
1

m

m∑
i=1

2(hw(xi)− yi)
∂

∂wj
(hw(xi)− yi) # power rule (7)

=
1

m

m∑
i=1

2(hw(xi)− yi)
∂

∂wj
σ(w · xi) # hw(xi) = σ(w · xi) (8)

=
1

m

m∑
i=1

2(hw(xi)− yi)σ′(w · xi)
∂

∂wj
w · xi # chain rule (9)

=
1

m

m∑
i=1

2(hw(xi)− yi)σ′(w · xi)
∂

∂wj

n∑
k=1

wkxi,k # defn dot product (10)

=
1

m

m∑
i=1

2(hw(xi)− yi)σ′(w · xi)xi,j #
∂wkxi,k
∂wj

6= 0 when k = j

(11)

Note that going from Equation 7 to Equation 8 uses the sum rule

d

dx
(f(x) + g(x)) =

d

dx
f(x) +

d

dx
g(x) (12)

Here f(x) = hw(xi) and g(x) = −yi. ∂
∂wj

hw(xi) = ∂
∂wj

σ(w · xi) and ∂yi
∂wj

= 0, so we’re left

with term ∂
∂wj

σ(w · xi) as we see in Equation 8.

Now, using the sigmoid activation function σ(x) = 1
1+e−x , who’s derivative σ′(x) = σ(x)(1−

σ(x)), gives us

∂E(w)

∂wj
=

2

m

m∑
i=1

(hw(xi)− yi)σ′(w · xi)xi,j (13)

=
2

m

m∑
i=1

(σ(w · xi)− yi)σ(w · x)(1− σ(w · x))xi,j (14)

(15)

5

Now, we can compute the gradient ∂E(w)
∂w as follows:

∂E(w)

∂w
=

2

m

m∑
i=1

(σ(w · xi)− yi)σ(w · xi)(1− σ(w · xi))xi (16)

(17)

Finally, let the update rate η = 0.1. Then the update to w is computed as

wt+1 := wt −
0.2

m

m∑
i=1

(hw(xi)− yi)hw(xi)(1− hw(xi))xi (18)

where hw(xi) = σ(wt · xi).

5 What About Multilayer Networks?

Consider a more general multilayer neural network, such as shown in Figure 3. Here we
are using the notation wi,j to denote the weights on the connection between perceptrons
(neurons, nodes) i and j. Note that the notation wi→j ≡ wi,j in Figure 3. See Appendix
1 for an analysis based on this notation.

One might also explicitly note the layer in the network which the weights apply to. Here
we use the notation wl

i,j to represent the weight from the jth neuron in the (l − 1)th layer

to the ith neuron in the lth layer. Note that here each layer l has its own weight matrix wl.
This is depicted in Figure 4 4. Here we use a similar notation for biases and activations:
blj represents the bias of the jth neuron in the lth layer and alj represents the activation of

the jth neuron in the lth layer. Now we can define the activation alj :

alj = σ

(∑
k

wl
jka

l−1
k + blj

)
(19)

Note here that wl is layer l’s weight matrix. Equation 19 can be rewritten in vectorized
form:

al = σ(wlal−1 + bl) (20)

4FIgure 4 courtesy http://neuralnetworksanddeeplearning.com/chap2.html

6

6 Acknowledgements

Thanks to Armin Wasicek for his careful reading of earlier versions of this document.

References

[1] F. Rosenblatt. http://psycnet.apa.org/psycinfo/1959-09865-001, Nov 1958.

7 Appendix 1

Armed with the wi,j notation we can write the sum of the inputs to perceptron (node) j
as

sj :=
∑
k

zkwk,j (21)

Here k iterates over all the perceptrons connected to j. The output of j is written as
zj = σ(sj), where σ is j’s activation (link) function.

Now, we can use the same error (cost) function for the multlayer network, E(w)

E(w) :=
1

m

m∑
i=1

(hw(xi)− yi)2 (22)

except that now w is a matrix that contains all the weights for the network:
w = [wi,j] ∀i, j.

The goal is again to find the w that minimizes E(w) using gradient descent. So we need

to calculate ∂E(w)
∂w . The first step is to separate the contributions of each of the m training

examples using the following observation:

∂E(w)

∂w
=

1

m

m∑
i=1

∂Ei(w)

∂w
(23)

where Ei(w) = (hw(xi)− yi)2. Then

7

Figure 3: Multi-Layer Perceptron

∂Ei(w)

∂wj,k
=

∂

∂wj,k
(hw(xi)− yi)2 # definition of E (24)

= 2(hw(xi)− yi)
∂hw(xi)

∂wj,k
(25)

= 2(hw(xi)− yi)
∂hw(xi)

∂sk

∂sk
∂wj,k

chain rule (26)

= 2(hw(xi)− yi)
∂hw(xi)

∂sk
zj (27)

Note that in going from Equation 26 to Equation 27, sk =
∑
i
ziwi,k, so ∂sk

∂wj,k
6= 0 where

i = j and 0 otherwise.

Now, if the kth node is an output node, then

∂hw(xi)

∂sk
=
∂σ(sk)

∂sk
= σ′(sk) (28)

so that

∂Ei(w)

∂wj,k
= 2(hw(xi)− yi)σ′(sk)zj (29)

8

Figure 4: Multi-Layer Perceptron: Layer Notation

On the other hand, if k is not an output node, then changes to sk can affect all the nodes
which are connected to k’s output, as follows

∂hw(xi)

∂sk
=
∂hw(xi)

∂zk

∂zk
∂sk

chain rule again (30)

=
∂hw(xi)

∂zk
σ′(sk) # zk = σ(sk) (31)

=
∑

o∈{v|v→k}

∂hw(xi)

∂so

∂so
∂zk

σ′(sk) # v is connected to k (32)

=
∑

o∈{v|v→k}

∂hw(xi)

∂so
wk,oσ

′(sk) # so =
∑
i

ziwi,o (33)

Note that in going from Equation 32 to Equation 33 we see that

∂so
∂zk

=
∂

∂zk

∑
i

ziwi,o (34)

which is only non-zero when i = k, so that ∂so
∂zk

= wk,o (Equation 33).

So what is left is to calculate sk and zk (feeding forward) and then work backwards from the

output calculating ∂hw(xi)
∂sk

and back propagate the error down the network (”backprop”).
The summary looks like:

9

• k is an output node: ∂Ei(w)
∂wj,k

= 2(hw(xi)− yi)σ′(sk)zj

• otherwise: ∂Ei(w)
∂wj,k

= 2(hw(xi)− yi)σ′(sk)zj
∑

o∈{v|v,k}

∂hw(xi)
∂so

wk,o

Using these results we see that

∂Ei(w)

∂w
=

[
∂Ei(w)

∂wj,k

]
∀j, k (35)

Finally, the weights can be updated in batch mode, in which case the update rule for batch
size of m is

wt+1 := wt − η
∂E(w)

∂w
(36)

:= wt − η
m∑
i=1

∂Ei(w)

∂w
(37)

Or if we take a Stochastic Gradient Descent (SGD) approach (one training example at a
time):

wt+1 := wt − η
∂E(w)

∂w
(38)

10

	Introduction
	Mean Squared Error (MSE)
	Basic Building Blocks: Perceptrons
	Building a Single Layer Neural Network
	What About Multilayer Networks?
	Acknowledgements
	Appendix 1

