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Notes

• πθ(s, a) = P [At = a|St = s, θ] = P(a1:T ;θc) (policy parameterized by θ)

• J(θc) = EP (a1:T ;θc)[R] (hook the RNN loss function to the RL reward)

• J1(θ) = V πθ(s1) = Eπθ [v1] = EP (a1:T ;θc)[R] (episodic environments)

• ∇θcJ(θc) =
T∑
t=1

EP (a1:T ;θc)

[
∇θc logP (at|a(t−1):1; θc)R

]
(REINFORCE policy gradient)

• at is the predicted action (a) and a(t−1):1 is the state s up to step t − 1 encoded in
the RNN

1 Computing the gradient analytically

First, we assume that the policy πθ is differentiable wherever it is non-zero (this is a softer
requirement than requiring πθ be differentiable everywhere). In addition, we know the
gradient: ∇θJ(θ). In this case, let p(x; θ) be the likelihood parametrized by θ and let
log p(x; θ) be the log likelihood. Then
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y = p(x; θ) # definition; see above (1)

z = log y = log p(x; θ) # definition; z is the log likelihood (2)

dz

dθ
=
dz

dy
· dy
dθ

# chain rule definition (3)

dz

dy
=

1

p(x; θ)
#

log(X)

dX
≈ 1

X
(4)

dy

dθ
=
d p(x; θ)

dθ
= ∇θp(x; θ) # definition (chain rule, again) (5)

dz

dθ
=
dz

dy
· dy
dθ

=
∇θ p(x; θ)

p(x; θ)
# chain rule (6)

= ∇θ log p(x; θ) # using the identity ∇θ log(w) =
1

w
∇θw (7)

and setting w = p(x; θ). Here ∇θ log p(x; θ) is known as the score or sometimes the Fischer
information. So the log derivative trick (sometimes likelihood ratio) is

∇θ log p(x; θ) =
∇θ p(x; θ)

p(x; θ)

Setting πθ(s, a) = p(x; θ) we see that

∇θπθ(s, a) = πθ(s, a)
∇θ πθ(s, a)

πθ(s, a)
(8)

= πθ(s, a)∇θ log πθ(s, a) # log derivative trick (9)

and the score function is ∇θ log πθ(s, a).

Now, since here πθ(s, a) = P (a1:T ; θc), we have

∇θcJ(θc) =
∑
s∈S

d(s)
∑
a∈A
∇θcπθc(s, a)Rs,a # defn policy gradient (10)

=
∑
s∈S

d(s)
∑
a∈A

πθc(s, a)∇ log πθc(s, a)Rs,a # log derivative trick (Eqn 9) (11)

= Eπθc
[
∇θc log πθc(s, a)R

]
# defn expectation (12)

= Eai∼P
[
∇θc logP (at|a(t−1):1; θc)R

]
# πθ(s, a) = P (a1:T ; θc) (13)

=
T∑
t=1

P(a1:T ;θc)

[
∇θc logP (at|a(t−1):1; θc)R

]
# REINFORCE pg (14)
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