Notes on NEURAL ARCHITECTURE SEARCH WITH REINFORCEMENT LEARNING

Barret Zoph, Quoc V. Le

David Meyer

dmm@{1-4-5.net,uoregon.edu,brocade.com,...}

November 28, 2016

Notes

- $\pi_{\theta}(s, a) = P[A_t = a | S_t = s, \theta] = P_{(a_1:T;\theta_c)}$ (policy parameterized by θ)
- $J(\theta_c) = \mathbb{E}_{P(a_1:T;\theta_c)}[R]$ (hook the RNN loss function to the RL reward)
- $J_1(\theta) = V^{\pi_{\theta}}(s_1) = \mathbb{E}_{\pi_{\theta}}[v_1] = \mathbb{E}_{P(a_1:T;\theta_c)}[R]$ (episodic environments)
- $\nabla_{\theta_c} J(\theta_c) = \sum_{t=1}^T E_{P(a_1:T;\theta_c)} \left[\nabla_{\theta_c} \log P(a_t | a_{(t-1):1}; \theta_c) R \right]$ (REINFORCE policy gradient)
- a_t is the predicted action (a) and $a_{(t-1):1}$ is the state s up to step t-1 encoded in the RNN

1 Computing the gradient analytically

First, we assume that the policy π_{θ} is differentiable wherever it is non-zero (this is a softer requirement than requiring π_{θ} be differentiable *everywhere*). In addition, we know the gradient: $\nabla_{\theta} J(\theta)$. In this case, let $p(\mathbf{x}; \theta)$ be the likelihood parametrized by θ and let $\log p(\mathbf{x}; \theta)$ be the *log likelihood*. Then

$$y = p(\mathbf{x}; \theta)$$
 # definition; see above (1)

$$z = \log y = \log p(\mathbf{x}; \theta)$$
 # definition; z is the log likelihood (2)

$$\frac{dz}{d\theta} = \frac{dz}{dy} \cdot \frac{dy}{d\theta} \qquad \text{# chain rule definition}$$
 (3)

$$\frac{dz}{d\theta} = \frac{dz}{dy} \cdot \frac{dy}{d\theta} \qquad \text{# chain rule definition} \qquad (3)$$

$$\frac{dz}{dy} = \frac{1}{p(\mathbf{x}; \theta)} \qquad \text{# } \frac{\log(X)}{dX} \approx \frac{1}{X} \qquad (4)$$

$$\frac{dy}{dy} = \frac{dy}{dy} = \frac{1}{p(\mathbf{x}; \theta)} \qquad \text{# } \frac{\log(X)}{dX} \approx \frac{1}{X} \qquad (4)$$

$$\frac{dy}{d\theta} = \frac{d p(\mathbf{x}; \theta)}{d\theta} = \nabla_{\theta} p(\mathbf{x}; \theta) \quad \text{# definition (chain rule, again)}$$
 (5)

$$\frac{dz}{d\theta} = \frac{dz}{dy} \cdot \frac{dy}{d\theta} = \frac{\nabla_{\theta} p(\mathbf{x}; \theta)}{p(\mathbf{x}; \theta)} \quad \text{# chain rule}$$
 (6)

$$= \nabla_{\theta} \log p(\mathbf{x}; \theta) \qquad \text{# using the identity } \nabla_{\theta} \log(w) = \frac{1}{w} \nabla_{\theta} w \qquad (7)$$

and setting $w = p(\mathbf{x}; \theta)$. Here $\nabla_{\theta} \log p(\mathbf{x}; \theta)$ is known as the score or sometimes the Fischer information. So the log derivative trick (sometimes likelihood ratio) is

$$\nabla_{\theta} \log p(\mathbf{x}; \theta) = \frac{\nabla_{\theta} p(\mathbf{x}; \theta)}{p(\mathbf{x}; \theta)}$$

Setting $\pi_{\theta}(s, a) = p(\mathbf{x}; \theta)$ we see that

$$\nabla_{\theta} \pi_{\theta}(s, a) = \pi_{\theta}(s, a) \frac{\nabla_{\theta} \pi_{\theta}(s, a)}{\pi_{\theta}(s, a)}$$
(8)

$$= \pi_{\theta}(s, a) \nabla_{\theta} \log \pi_{\theta}(s, a) \qquad \text{# log derivative trick}$$
 (9)

and the score function is $\nabla_{\theta} \log \pi_{\theta}(s, a)$.

Now, since here $\pi_{\theta}(s, a) = P(a_{1:T}; \theta_c)$, we have

$$\nabla_{\theta_c} J(\theta_c) = \sum_{s \in S} d(s) \sum_{a \in A} \nabla_{\theta_c} \pi_{\theta_c}(s, a) \mathcal{R}_{s,a} \qquad \text{# defn policy gradient}$$
 (10)

$$= \sum_{s \in S} d(s) \sum_{a \in A} \pi_{\theta_c}(s, a) \nabla \log \pi_{\theta_c}(s, a) R_{s,a} \quad \# \text{ log derivative trick (Eqn 9)} \quad (11)$$

$$= \mathbb{E}_{\pi_{\theta_c}} \left[\nabla_{\theta_c} \log \pi_{\theta_c}(s, a) R \right]$$
 # defn expectation (12)

$$= \mathbb{E}_{a_i \sim P} \left[\nabla_{\theta_c} \log P(a_t | a_{(t-1):1}; \theta_c) R \right] \qquad \# \pi_{\theta}(s, a) = P(a_{1:T}; \theta_c)$$

$$(12)$$

$$= \sum_{t=1}^{T} P_{(a_1:T;\theta_c)} \left[\nabla_{\theta_c} \log P(a_t | a_{(t-1):1}; \theta_c) R \right] \# \text{REINFORCE pg}$$
(14)