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1 Introduction

Note well: There are likely to be many mistakes in this document. That said...

Much of what is described here follows from two simple rules:

Sum Rule: P (X ) =
∑
y

P (X ,Y) (1)

Product Rule: P (X ,Y) = P (X|Y)P (Y) (2)

• The Sum Rule is sometimes called marginalization

• The Product Rule is part of the proof of the Hammersley-Clifford Theorem

Remember also that X = {xi}|X |i=1, where each xi is a realization of the random variable x1.
Lets also say that the set Θ of probability distribution parameters can be used to explain
the evidence X . Then we say that the ”manner in which the evidence X depends on the
parameters Θ” is the observation model. The analytic form of the observation model is the
likelihood P (X|Θ).

1Each observation xi is, in general, a data point in a multidimensional space.
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2 Estimating the parameters Θ with Bayes’ Theorem

Note that

P (Θ,X ) = P (X ,Θ) (3)

P (Θ,X ) = P (Θ|X )P (X ) (4)

P (X ,Θ) = P (X|Θ)P (Θ) (5)

P (Θ|X )P (X ) = P (X|Θ)P (Θ) (6)

Solving for P (Θ|X ) we get Bayes’ Theorem

P (Θ|X ) =
P (X|Θ)P (Θ)

P (X )
(7)

(8)

Said another way

posterior =
likelihood · prior

evidence
(9)

You might also see Bayes’ Theorem written using the Law of Total Probability2 which is
sometimes written as follows:

P (A) =
∑
n

P (A ∩Bn) # by the Sum Rule (Equation 1) (10)

=
∑
n

P (A,Bn) # in the notation used in Equation 1 (11)

=
∑
n

P (A|Bn)P (Bn) # by the Product Rule (Equation 2) (12)

so that the posterior distribution P (C1|x) for two classes C1 and C2 given input vector x
would look like

P (C1|x) =
P (x|C1)P (C1)

P (x|C1)P (C1) + P (x|C2)P (C2)
(13)

2The Law of Total Probability is a combination of the Sum and Product Rules

2



Interestingly, the posterior distribution is related to logistic regression as follows: First
recall that the posterior P (C1|x) is

P (C1|x) =
P (x|C1)P (C1)

P (x|C1)P (C1) + P (x|C2)P (C2)
(14)

Now, if we set

a = ln
P (x|C1)P (C1)

P (x|C2)P (C2)
(15)

we can see that

P (C1|x) =
1

1 + e−a
= σ(a) (16)

that is, the sigmoid function.

2.1 Maximum Likelihood Estimation (MLE)

Given all of that, for the MLE we seek the value of Θ that maximizes the likelihood P (X|Θ)
for our observations X . Remembering that X = {x1, x2, . . .} and that the xi are iid, the
value of Θ we seek maximizes

∏
xi∈X

P (xi|Θ) (17)

Because of the product it is easier to use the log3, we use the log likelihood L:

L =
∑
xi∈X

logP (xi|Θ) (18)

and define Θ̂ML as follows:

Θ̂ML = argmax
Θ

L (19)

3and since log(x) is monotonically increasing it doesn’t effect the argmax
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The maximization is obtained by (calculus tricks):

∂L
∂θi

= 0 ∀θi ∈ Θ (20)

Note finally that in a Generalized Linear Regression setting, we have

η = wTx + b (21)

p(y|x) = p(y|g(η); θ) (22)

where g(.) is an inverse link function, also referred to as an activation function. For
example, if the link function is the logistic function, then the inverse link function g(η) =

1
1+e−η and the negative log-likelihood L is

L = − log p(y|g(η); θ) (23)

2.2 Maximum a Posteriori (MAP) Estimation of Θ

Recall that

P (Θ|X ) =
P (X|Θ)P (Θ)

P (X )
(24)

We are seeking the value of Θ that maximizes P (Θ|X ), so the solution can be stated as

Θ̂MAP = argmax
Θ

P (Θ|X ) (25)

= argmax
Θ

P (X|Θ) · P (Θ)

P (X )
(26)

However, since P (X ) does not depend on Θ, we can write

Θ̂MAP = argmax
Θ

P (X|Θ) · P (Θ) (27)

=
∏
xi∈X

P (xi|Θ) · P (Θ) (28)

If we again take the log, we get

Θ̂MAP = argmax
Θ

( ∑
xi∈X

logP (xi|Θ) + logP (Θ)

)
(29)
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2.3 Notes

• Both MLE and MAP are point estimates for Θ (contrast probability distributions)

• MLE notoriously overfits

• MAP allows us to take into account knowledge about the prior (which is a sort of a
regularizer)

• Bayesian estimation, by contrast, calculates the full posterior distribution P (Θ|X )

2.4 Bayesian Estimation

Recall that Bayesian estimation calculates the full posterior distribution P (Θ|X ), where

P (Θ|X ) =
P (X|Θ) P (Θ)

P (X )
(30)

In this case, however, the denominator P (X ) cannot be ignored, and we know from the
sum and product rules that

P (X ) =

∫
Θ
P (X ,Θ) dΘ (31)

=

∫
Θ
P (X|Θ) P (Θ) dΘ (32)

putting it all together we get

P (Θ|X ) =
P (X|Θ) P (Θ)∫

Θ P (X|Θ) P (Θ) dΘ
(33)

If we want to be able to derive an algebraic form for the posterior P (Θ|X ), the most
challenging part will be finding the integral in the denominator. This is where the idea
of conjugate priors and appoximate inference approaches (Monte Carlo Integration and
Variational Bayesian methods4) are useful. Need to futher expand this...

4Variational Bayesian methods are a family of techniques for approximating intractable integrals arising
in Bayesian inference and machine learning. They are typically used in complex statistical models consisting
of observed variables (usually termed ”data”) as well as unknown parameters and latent variables, with
various sorts of relationships among the three types of random variables, as might be described by a
graphical model.
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3 Monte Carlo Integration

Suppose we have a distribution p(θ) (perhaps a posterior) the we want to sample quantities
of interest from. To do this analytically, we need to take an integral of the form

I =

∫
Θ
g(θ) p(θ) dθ (34)

where g(θ) is some function of θ (typically g(θ) = θ (the mean), etc). Need a deeper
analysis here (note to self), but the punchline is that you can estimate I using Monte
Carlo Integration as follows: Sample M values (θi) from p(θ) and calculate

ÎM =
1

M

M∑
i=1

g(θi) (35)

Note that this works fine if the samples from p(θ) are iid5 but if not, we can use a Markov
Chain to draw ”slightly dependent” samples and depend on the Ergodic Theorem (see
Section 5.2).

4 Acknowledgements

5We know this by the Strong Law of Large Numbers, see Section 5.1.
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5 Appendix

5.1 Strong Law of Large Numbers

Let X1, X2, . . . , XM be a sequence of independent and identically distributed random
variables, each having a finite mean µi = E[Xi].

Then with probability 1

1

M

M∑
i=1

Xi → E[X] (36)

as M →∞.

5.2 Ergodic Theorem

Let θ(1), θ(2), . . . , θ(M) be M samples from a Markov chain that is aperiodic, irreducible,
and positive recurrent6, and E[g(θ)] <∞.

Then with probability 1

1

M

M∑
i=1

g(θi)→ E[g(θ)] =

∫
Θ
g(θ) π(θ) dθ (37)

as M →∞ and where π is the stationary distribution of the Markov chain.

6In this case, the chain is said to be ergodic.
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