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Abstract

This document started life as an exploration into the surprising discovery of adver-
sarial examples by Szegedy et al. [3]. This discovery has, among other things, led to
new ways of thinking about unsupervised training of deep models [1] while at the same
time causing confusion and concern about the nature of learning in such (deep) models.
These notes explore the analysis of adversarial examples given in [2] and elsewhere. In
particular, I couldn’t understand why for linear models, the perturbation wTη was
maximized by setting η = sign(w). The answer is related to what are called Norm
Balls and the relationship between norms and inner products.

1 Introduction

The surprising discovery of adversarial examples by Szegedy et al. [3] has led to new ways
of thinking about unsupervised training of deep models [1] while at the same time causing
confusion and concern about the nature of learning in such (deep) models. These notes
explore the analysis of adversarial examples given in [2] and elsewhere.

What Szegedy et al. [3] discovered was that several machine learning models, including
state-of-the-art neural networks, are vulnerable to adversarial examples. That is, these
machine learning models can misclassify examples that are only slightly different (imper-
ceptibly so in many cases) from correctly classified examples drawn from the data distri-
bution. In many cases, a wide variety of models with different architectures trained on
different subsets of the training data misclassify the same adversarial example (this is kind
of shocking). The implication is that adversarial examples expose fundamental problems
in popular training algorithms.
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2 Linear Explanation of Adversarial Examples

In [2], a discussion of the ”Linear Explanation of Adversarial Examples” explains the
existence of adversarial examples for linear models. The section starts with a description
of the precision of the sensor or storage media. Here they use the example of digital
images, which often use only eight bits per pixel (gray scales) and as a result they discard
all information below 1

255 of the dynamic range. The point here is that since the precision of
the features is limited, it makes little sense for a classifier to respond differently to an input
x than to an adversarial input x̂ = x+ η, if of course every element of the perturbation η
is smaller than the precision of the features. Let’s say that ε is the largest value below the
resolution of the sensor (or storage media). Then for problems with well-separated classes,
we expect a classifier to assign the same class to x and x̂, so long as ||η||∞ < ε (where
||x||∞ is the max or infinity norm).

Next, consider the activation induced by an adversarial example x̂:

x̂ = x + η # adversarial example x̂ given perturbation η (1)

wTx̂ = wTx+ wTη # activation wTx̂ induced by η (2)

Notes:

• The adversarial perturbation causes the activation to grow by wTη

• wTη is maximized, subject to ||η||∞ < ε, by assigning η = sign(w)

What I couldn’t understand about Goodfellow’s description is why, in the linear case, the
perturbation wTη is maximized, subject to ||η||∞ < ε, by assigning η = sign(w), where
the sign or signum function is defined at follows:

sign(x) :=


−1 if x < 0

0 if x = 0
1 if x > 0

The remainder of this note contains a brief overview of the Maximization of Inner Products
over Norm Balls, which contains the parts of the answer to my question.
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Figure 1: Euclidean Norms in R2 and R3

3 The Maximization of Inner Products over Norm Balls

First, what is a norm? The most common definition involves a function ||.|| : Rn → R, the
vector norm, which has the following properties:

1. ||x|| ≥ 0 for any vector x ∈ Rn, and ||x|| = 0 iff x = 0

2. ||αx|| = |α|||x|| for any vector x ∈ Rn and any scalar α

3. ||x + y|| ≤ ||x||+ ||y|| for any vectors x,y ∈ Rn

The last property is called the triangle inequality. Note also that when n = 1, the absolute
value function is a vector norm.

The most commonly used vector norms belong to the family of l-norms, or sometimes
lp-norms, which are defined as

||x||p =
( n∑

i=1

|xi|p
) 1

p
(3)

Now, it can be shown that for any p > 0, ||.||p defines a vector norm. The vector norms of
particular interest include:
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• p = 1: The `1-norm ||x||1 =
n∑

i=1
|xi|

• p = 2: The `2-norm or Euclidean norm ||x||2 =

√
n∑

i=1
x2i =

√
xTx

• p =∞: The `∞-norm ||x||∞ = max
1≤i≤n

|xi|

Figure 1 shows the Euclidean Norms in R2 and R3.

There are many (many) useful theorems one can prove here, but I want to jump ahead to
norm balls.

3.1 What is a Norm Ball?

Again there are many theorems one can prove about norm balls, but suffice it to say that
in Cartesian space Rn with the p-norm, `p, an open ball is the set

B(r) =
{
x ∈ Rn :

n∑
i=1

|xi|p < rp
}

# r is the radius of ball B (4)

For n = 2, in particular, the balls of `1 (often called the taxicab or Manhattan metric)
are squares with the diagonals parallel to the coordinate axes; those of `∞ (the Chebyshev
metric) are squares with the sides parallel to the coordinate axes. For other values of p, the
balls are bounded by Lam curves (hypoellipses or hyperellipses). For n = 3, the balls of
`1 are octahedra with axis-aligned body diagonals, those of `∞ are cubes with axis-aligned
edges, and those of `p with p > 2 are superellipsoids. See Figure 2 for a few examples.

4 Maximization of Inner Products over Norm Balls

Finally we’re getting to the heart of the matter. There is an interesting relationship between
inner products and norms, but I’m going to skip that here. Rather, consider the following:
Given a nonzero vector y ∈ Rn,, consider the problem of finding some vector x ∈ Bp (i.e.,
the unit ball in `p norm) that maximizes the inner product xTy. That is, given some
nonzero vector y, we want to solve for x that satisfies max

||x||p≤1
xTy.

For p = 2, the solution is straight forward since xTy = cos θ||x||2||y||2; x should be parallel
to y (i.e., the angle between x and y is zero) so that the norm is as large as possible, that
is, one. The unique solution is here is x∗2 = y

||y||2 .
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Figure 2: Norm Balls in R2

This is where things get (more) interesting and relevant to my question as to why η
is set to sign(w) in Goodfellow’s work. So consider the case where p = ∞, i.e., the

max norm. Now, since xTy =
n∑

i=1
xiyi, where each element xi is such that |xi| ≤ 1, we

can see that the sum is maximized by setting xi = sign(yi). Further, we can see that

max
||x||∞≤1

xTy =
n∑

i=1
|yi| = ||y||1. So here we see that the optimal solution may not be unique,

since any xi ∈ [−1, 1], corresponding to yi = 0, could be selected without modifying the
optimal value.

Finally, for completeness, consider the case where p = 1. Here the inner product xTy =
n∑

i=1
xiyi can be interpreted as a weighted average of the yi’s where the xi’s are the weights

whose absolute values must sum up to one. The maximum of the weighted average is
achieved by first finding the yi having the largest absolute value, that is, by finding one
index m such that |yi| ≤ |ym| for all i = 1, 2, · · · , n, and then setting

|x∗1|i =

{
sign(yi) if i = m
0 otherwise

What we wind up with there is that max
||x||1≤1

xTy = maxi |yi| = ||y||∞. Here again the

optimal solution may not be unique since in the case when y has more than one entry
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with maximum absolute value we can choose m to be any of the indicies corresponding to
these maxima. This shows the goal of maximizing inner products over norm balls, namely
to create a n-dimensional unit vector that goes from the origin to the surface of the norm
ball.
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