
Notes on Variational Autoencoders

David Meyer

dmm@{1-4-5.net,uoregon.edu,...}

17 Jan 2015

1 Introduction

Variational Autoecoders (VAEs) [1] are generative models in which we have examples X
that are distributed according to some unknown distribution Pgen(X), and our goal is to
learn a model P which we can sample from, such that P is as similar as possible to Pgen.
This is a long standing problem in machine learning, where most approaches have had three
significant drawbacks. First, they might require strong assumptions about the structure in
the data. Second, they might make severe approximations, leading to suboptimal models.
Third, they might rely on computationally expensive inference procedures like Markov
Chain Monte Carlo (MCMC). Recent progress in training neural networks as powerful
function approximators through backpropagation have provided new ways to think about
the problem. VAEs are one such method.

2 Review: Latent Variable Models

Most of what we’ll review in this section is based on two simple but fundamental rules of
probability:

Sum Rule: p(X) =
∑
y

p(X ∩ Y) (1)

Product Rule: p(X ,Y) = p(X|Y)p(Y) (2)

Note that

p(Θ,X) = p(X ,Θ) (3)

p(Θ,X) = p(Θ|X)p(X) (4)

p(X ,Θ) = p(X|Θ)p(Θ) (5)

p(Θ|X)p(X) = p(X|Θ)p(Θ) (6)

1

Solving for p(Θ|X) we get Bayes’ Theorem

p(Θ|X) =
p(X|Θ)p(Θ)

p(X)
(7)

You might also see Bayes’ Theorem written using the Law of Total Probability1 which is
sometimes written as follows:

p(A) =
∑
n

p(A ∩Bn) # by the Sum Rule (Equation 1) (8)

=
∑
n

p(A,Bn) # in the notation used in Equation 1 (9)

=
∑
n

p(A|Bn)p(Bn) # by the Product Rule (Equation 2) (10)

2.1 Latent Variables?

The basic idea here is that the distribution of the data we observe, X , is controlled (or at
least significantly influenced) by a set of hidden or latent variables Z. In many cases what
we want to learn is a mapping from the latent variables z to some complicated distribution
on x.

Stated more formally, for x ∈ X and z ∈ Z (z is a vector of latent variables, generally with
values taken from R):

p(x) =

∫
z
p(x, z)dz (11)

=

∫
z
p(x|z)p(z)dz # sum and product rules (12)

where p(z) is something simple like N (0, I) and p(x|z) = g(z) (we’ll use g(z) below).

p(x) also sometimes called the evidence or the marginal likelihood since Bayes Rule/Theorem
(Equation 7) can be characterized as

posterior =
likelihood · prior

evidence

However, computing the probability of the evidence is frequently intractable due to the
integral shown in Equation 12. This is where we appeal to Approximate Inference.

1The Law of Total Probability is a combination of the Sum and Product Rules

2

3 The Problem of Approximate Inference

Let x = x1:N be a set of observed variables and let z = z1:M be a set of latent variables
with joint distribution p(z,x). Then the inference problem is to compute the conditional
distribution of latent variables given the observations, that is, p(z|x).

We can write the conditional or posterior distribution as

p(z|x) =
p(z,x)

p(x)
(13)

The denominator of Equation 13 is the marginal distribution of the observations (also
called the evidence), and is calculated by marginalizing out the latent variables from the
joint distribution, i.e.,

p(x) =

∫
z
p(z,x) dz (14)

In many cases of interest this integral is not available in closed form or is intractable
(requires exponential time to compute). However, the model evidence is just the quantity
we need to compute the conditional (p(z|x)) from the joint (p(z,x)). This is why inference
in these cases can be hard.

Recall that in variational inference we specify a family L of distributions over the latent
variables. Each q(z) ∈ L is a candidate approximation to the exact posterior. The goal
is to find the best approximation, e.g., the one that satisfies the following optimization
problem:

q∗(z) = argmax
q(z)∈L

KL[q(z)||p(z|x)] (15)

Unfortunately, this objective is still not computable because it requires computing the
evidence log p(x) in Equation 14 (that the evidence is hard to compute is why we appeal
to approximate inference in the first place). You can see why pretty easily:

DKL[q(z)||p(z|x)] = E[log q(z)]− E[log p(z|x)]

= E[log q(z)]− E[log p(z, x)] + log p(x)

3

so we see the dependence on the difficult if not impossible to calculate evidence p(x).
Because we cannot compute the KL, we optimize an alternative that is equivalent to the
KL up to an added constant:

ELBO(q) = E[log p(z, x)]− E[log q(z)] (16)

This function is called the evidence lower bound (ELBO). The ELBO is the negative
KL-divergence minus the log of the evidence, log p(x) (which is constant with respect to
q(z)). Importantly, note that maximizing the ELBO is equivalent to minimizing the KL-
divergence.

The ELBO also gives some information about the optimal variational distribution. In
particular, we can rewrite the ELBO as follows

ELBO = E[log p(z)] + E[log p(x|z)]− E[log q(z)]

= E[log p(x|z)]−KL[q(z)||p(z)]

An interesting and important observation here is that the ELBO is a lower bound on
the log evidence. That is, log p(x) ≥ ELBO(q),∀q(z). You can see this by noticing that
log p(x) = DKL[q(z)||p(z|x)] + ELBO(q); applying Jensen’s Inequality (Figure 1) gives
DKL(·) ≥ 0. The (lower) bound follows directly from this fact. More below...

Now, suppose we have a vector of latent variables z which has probability density function
(pdf) p(z), and that we we can easily sample z from p(z). Suppose further that we have a
family of functions f(z; θ) where θ is parameter vector. Then our goal is to optimize θ such
that f(z; θ) produces samples that look like X with high probability (for every X ∈ X)
when z is sampled from p(z). Stated more formally, we wish to maximize the probability
of each X in the training set under the generative process described by (switching notation
a bit)

p(x) =

∫
z
p(x|z; θ) p(z) dz =

∫
z
pθ(x|z) p(z) dz (17)

4 Variational Autoencoders

Variational autoencoders attempt to approximately optimize Equation 17.2 Now, to opti-
mize Equation 17 there are two problems which the VAE must solve. First, the VAE must

2Note that VAEs are called autoencoders because the final training objective that derives from this setup
does have an encoder and a decoder, and resembles a traditional autoencoder.

4

Figure 1: Jensen’s Inequality (image courtesy Wikipedia)

describe how to define the latent variables z (that is, decide what information they repre-
sent). Second, the VAE must somehow deal with the integral over z (again in Equation
17).

4.1 Choosing the Latent Variables z

When choosing z, we would like to avoid manually deciding what information each dimen-
sion of z encodes. We also want to avoid explicitly describing the dependencies (i.e., the
structure of Z) between the dimensions of z. VAEs take an novel approach to dealing with
this problem: they assume that there is no simple interpretation of the dimensions of z,
and instead assert that samples of z can be drawn from a simple distribution, typically
N (0, I) (here again I is the identity matrix). Seems well, impossible.

Note that here f(z; θ) has been replaced by pθ(x|z) to make the dependence on x explicit.
In VAEs the choice of pθ(x|z) is oftten a Gaussian such that

pθ(x|z) = N (f(z; θ), σ2 ∗ I) (18)

That is, pθ(x|z) is a Gaussian distribution with mean µ = f(z; θ) and covariance Σ = σ2∗I,
where σ is a scalar hyper-parameter and I is the identity matrix. The important property
here is that pθ(x|z) can be efficiently computed.

5

Figure 2: The standard VAE (directed) graphical model

So what is really going on here? The key is to notice that any distribution in d dimensions
can be generated by taking a set of d variables that are normally distributed and map-
ping them through a sufficiently complicated function. Hence, provided powerful function
approximators, we can simply learn a function which maps our independent, normally-
distributed z values to whatever latent variables might be needed for the model, and then
map those latent variables to x. In fact, recall that pθ(x|z) = N (f(z; θ), σ2 ∗ I). Now,
imagine that f(z; θ) is a multi-layer neural network, then we can imagine the network using
its first few layers to map the normally distributed z’s to the latent values with exactly the
right properties. So in the case of something like MNIST, it can use later layers to map
those latent values to a fully-rendered digit. In general, we don’t need to worry about en-
suring that the latent structure exists. If such latent structure helps the model accurately
reproduce (i.e. maximize the likelihood of) the training set, then the network will learn
that structure at some layer.

Recall that our goal is to maximize Equation 17 where p(z) = N (0, I). Note that it is
actually conceptually straightforward to compute an approximation of p(x). To do this,
in theory we can first sample a large number of z values {z1, · · · , zn}, and then compute

p(x) = 1
n

n∑
i=1

p(x|zi). The problem is that if Z is a high-dimensional space, n may need

to be impractically large to get an accurate estimate of p(x); see Appendix 10.2 on the

6

Figure 3: The VAE (directed) Inference/Learning Challenge. Image courtesy http://

videolectures.net/deeplearning2015_courville_autoencoder_extension/

Ergodic Theorem.

5 VAE Objective Function

So OK, the naive approach requires too many samples from Z to be practical. However,
what we can observe is that for most of the z’s, pθ(x|z) will be close to zero and thus add
little to our estimate of pθ(x). This leads us to one of the key ideas behind VAEs: VAEs
attempt to sample values of z that are likely to have produced x, and then uses those z’s
to compute pθ(x).

5.1 So where do the z’s come from?

The problem with directly computing the z’s is that posterior p(z|x) is intractable, but we
need it to train the directed model. This situation is depicted in Figure 3. The solution
taken by VAEs is introduce an inference machine qφ(z|x) that learns to approximate the
posterior pθ(z|x). But how?

Suppose that z is sampled from some arbitrary distribution with pdf qφ(z) (not the Gaus-
sian we discussed above). This leads to one of the VAEs key operations: the relationship
between Ez∼ qφ(z)[pθ(x|z)] and p(x). But how to do this? One way is to use the Kullback-
Leibler divergence DKL between qφ(z) and pθ(z|x). That is

DKL[qφ(z)||pθ(z|x)] = Ez∼qφ(z)[log qφ(z)− log pθ(z|x)] (19)

Applying Bayes’ Rule to Equation 19, we get

7

http://videolectures.net/deeplearning2015_courville_autoencoder_extension/
http://videolectures.net/deeplearning2015_courville_autoencoder_extension/

DKL[qφ(z)||pθ(z|x)] = Ez∼qφ(z)[log qφ(z)− log pθ(x|z)− log pθ(z)] + log p(x) (20)

Notice here that log p(x) can be taken out of the expectation because it doesn’t depend on
z. Doing a little algebra gives us:

log p(x)−DKL[qφ(z)||pθ(z|x)] = Ez∼q[log pθ(x|z)]−DKL[qφ(z)||pθ(z)] (21)

Equation 21 is the basis of the VAE. The left hand side has the quantity we want to
maximize: log pθ(x) (plus an error term that we hope is small). The right hand side is
something we can optimize via stochastic gradient descent given the right choice of q. That
is, we have solved our problem of sampling z by training a distribution q to predict which
values of z are likely to produce x and ignoring the rest. In particular, on left hand side
we are maximizing log p(x) while simultaneously minimizing DKL[qφ(z|x)||pθ(z|x)]. Now,
pθ(z|x) is not something we can compute analytically: it describes the values of z that are
likely to give rise to a sample like x under our model in Figure 2. On the other hand, the
second term on the left is pulling qφ(z|x) to match pθ(z|x). Assuming we use an arbitrarily
high-capacity model for qφ(z|x) then qφ(z|x) will hopefully actually match pθ(z|x), in which
case this KL-divergence term will be zero, and we will be directly optimizing log p(x)3.

But we can go a bit further. We can define a variational lower bound L on the data
likelihood such that pθ(x) > L(θ, φ,x), where

L(θ, φ,x) = Eqφ(z|x)[log pθ(x, z)− log qφ(z|x)] (22)

= Eqφ(z|x)[log pθ(x|z) + log pθ(z)− log qφ(z|x)] (23)

= −DKL[qφ(z|x)||pθ(z)] + Eqφ(z|x)[log pθ(x|z)] (24)

Notes:

• −DKL[qφ(z|x)||pθ(z)] is a regularization term

• Eqφ(z|x)[log pθ(x|z)] is a reconstruction term

• x is fixed

3Note side effect: we have made the intractable pθ(z|x) tractable: we can just use the computable
qφ(z|x) to estimate it.

8

Figure 4: Neural networks for qφ(z|x) and pθ(x|z)

• qφ can be any distribution

• Since we’re interested in inferring p(x) it makes sense to construct q using x

• Goal: Find qφ(z|x)) so that DKL[qφ(z|x)||pθ(z)] is close to zero

• Read pθ(z|x) as ”the distribution over the z’s that could have been produced by a
sample like x under the model in Figure 2”, which is hopefully a smaller set than all
of p(z).

6 VAE Inference Model

The approach taken by VAE’s is to introduce an inference model qφ(z|x) that learns to
approximate the intractable posterior pθ(z|x) by optimizing the variational lower bound
described above:

L(θ, φ,x) = −DKL[qφ(z|x)||pθ(z)] + Eqφ(z|x)[log pθ(x|z)] (25)

To compute qφ(z|x), we parameterize another neural network as shown in Figure 4.

7 One Important ”Trick”

First, consider z to be real and qφ(z|x) = N (z;µz(x), σz(x)). Then the Reparameterization
Trick says we should parametrize z as z = µz(x) + σz(x))εz, where εz = N (0, 1). This
is depicted in Figure 5. The beautiful thing about the reparameterization trick is that

9

Figure 5: Reparameterization Trick

allows us to use back-propagation, moving the sampling out of the graph into the input
layer at training time: see Figure 6. Note that it also to train both the encoder and
decoder pathways simultaneously with the objective function shown in Equation 25. This
is depicted in Figure 7.

8 A Few Final Thoughts

First, observe that once the VAE is trained, there is no need for the encoder pathway and
amazingly, the VAE can generate images (in this case) directly from N (0, I), as incredible
as that may sound. This why the VAE graphical model is frequently drawn as seen in
Figure 8.

Finally, Figure 9 shows an implementation of the VAE cost function from [1].

9 Acknowledgements

References

[1] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. 12 2013.

10

Figure 6: A training-time variational autoencoder implemented as a feed-forward neural
network, where pθ(x|z) is Gaussian. The network on the left is without the reparameteri-
zation trick, and network on the right is with it. Red shows sampling operations that are
non-differentiable. Blue shows loss layers. The feedforward behavior of these networks is
identical, but back propagation can be applied only to the right network. Image courtesy
https://arxiv.org/abs/1606.05908

11

https://arxiv.org/abs/1606.05908

Figure 7: Training the VAE via Backpropagation

Figure 8: VAE Graphical Model With No Encoder Pathway

12

10 Appendix

10.1 Strong Law of Large Numbers

Let X1, X2, . . . , XM be a sequence of independent and identically distributed random
variables, each having a finite mean µi = E[Xi].

Then with probability 1

1

M

M∑
i=1

Xi → E[X] (26)

as M →∞.

10.2 Ergodic Theorem

Let θ(1), θ(2), . . . , θ(M) be M samples from a Markov chain that is aperiodic, irreducible,
and positive recurrent4, and E[g(θ)] <∞.

Then with probability 1

1

M

M∑
i=1

g(θi)→ E[g(θ)] =

∫
Θ
g(θ) π(θ) dθ (27)

as M →∞ and where π is the stationary distribution of the Markov chain.

4In this case, the chain is said to be ergodic.

13

Figure 9: Cost Function from ”Auto-encoding Variational Bayes”

14

	Introduction
	Review: Latent Variable Models
	Latent Variables?

	The Problem of Approximate Inference
	Variational Autoencoders
	Choosing the Latent Variables z

	VAE Objective Function
	So where do the z's come from?

	VAE Inference Model
	One Important "Trick"
	A Few Final Thoughts
	Acknowledgements
	Appendix
	Strong Law of Large Numbers
	Ergodic Theorem

