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1 Introduction

The Bell Circuit, shown in Figure 1, is comprised of two gates, H and CNOT, which are defined as follows:

H =
1√
2

[
1 1
1 −1

]
,CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


and results in two maximally entangled qubits1. How does this work?

First, recall that

H |0〉 =
1√
2

(
|0〉+ |1〉

)
and H |1〉 =

1√
2

(
|0〉 − |1〉

)
The Bell Circuit, shown in Figure 1, applies H to |b0〉 and then applies the CNOT gate to H |b0〉 (control
qubit) and |b1〉 (target qubit). The inputs and evolution of the Bell Circuit are shown are Table 1.

Figure 1: Bell Circuit

b0b1 H |b0〉 |b1〉 Bell Circuit evolution with inputs |b0〉 and |b1〉 Bell State

00 H |0〉 |0〉 |0〉 H−→ 1√
2
(|0〉+ |1〉) ⊗|0〉−−−→ 1√

2
(|0〉+ |1〉) |0〉 CNOT−−−−→ 1√

2
(|00〉+ |11〉) |φ+〉

01 H |0〉 |1〉 |0〉 H−→ 1√
2
(|0〉+ |1〉) ⊗|1〉−−−→ 1√

2
(|0〉+ |1〉) |1〉 CNOT−−−−→ 1√

2
(|01〉+ |10〉) |ψ+〉

10 H |1〉 |0〉 |1〉 H−→ 1√
2
(|0〉 − |1〉) ⊗|0〉−−−→ 1√

2
(|0〉 − |1〉) |0〉 CNOT−−−−→ 1√

2
(|00〉 − |11〉) |φ−〉

11 H |1〉 |1〉 |1〉 H−→ 1√
2
(|0〉 − |1〉) ⊗|1〉−−−→ 1√

2
(|0〉 − |1〉) |1〉 CNOT−−−−→ 1√

2
(|01〉 − |10〉) |ψ−〉

Table 1: Bell States

1This state is sometimes called an EPR state.
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What we can see from Table 1 is that b0 selects the ”bit” (|φ〉 or |ψ〉), and b1 selects the ”sign” (|+〉 or |−〉).
Since there are four orthonormal states, the Bell basis, we can encode two bits (b0 and b1) in the four Bell
States.

Now, if Alice wants to send two classical bits to Bob using one qubit (superdense coding), she need only
transform her qubit2 into the Bell State corresponding to the two bits she wants to send, then send her half
to Bob (this requires a quantum channel). Bob can then recover Alice’s two bit message.

But how can Bob recover Alice’s message? Recall that unitary quantum operations are reversible. So Bob
can use the Reverse Bell Circuit shown in Figure 2 to recover Alice’s 2 bit message.

Figure 2: Reverse Bell Circuit

2 Superdense Coding

Suppose Alice wants to send Bob the message 00. Alice can perform one or more unitary operations on her
qubit (her half of the entangled pair) that will allow Bob, when presented with Alice’s qubit, to reconstruct

Alice’s message b0b1. If we run |φ+〉 through the circuit in Figure 2, that is, |φ+〉 CNOT−−−−→ H−−→ |b0b1〉, Bob will
recover Alice’s message (b0b1 = 00). Why is this?

|φ+〉 =
1√
2

(|00〉+ |11〉) −→

1√
2

(|0〉 |0〉+ |1〉 |1〉) CNOT−−−−→ 1√
2

(|00〉+ |10〉) −→

1√
2

(|00〉+ |10〉) H−−→ 1√
2

( 1√
2

(|0〉+ |1〉) |0〉+
1√
2

(|0〉 − |1〉) |0〉
)

=
1√
2

1√
2

(
(|0〉+ |1〉) |0〉+ (|0〉 − |1〉) |0〉

)
=

1

2

(
|00〉+ |10〉+ |00〉 − |10〉

)
=

1

2

(
2 |00〉+ (|10〉 − |10〉)

)
=

1

2
· 2 |00〉

= |00〉

Bob can now measure both qubits and recover Alice’s message (b0b1 = 00).

In general, Alice notices that

• To send 00, apply the Identity matrix I =

[
1 0
0 1

]
to her half of the EPR pair

• To send 01, apply the matrix X =

[
0 1
1 0

]
to her half of the EPR pair

2Her half of the EPR pair, the two entangled qubits.
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• To send 10, apply the matrix Z =

[
1 0
0 −1

]
to her half of the EPR pair

• To send 11, apply iY = i

[
0 −i
i 0

]
, i.e. both X and Z, to her half of the EPR pair

where I, X, Y and Z are the Pauli matrices [6].

This transforms the EPR pair |φ+〉 into the four Bell States |φ+〉, |ψ+〉, |φ−〉 and |ψ−〉 respectively:

• 00:

[
1 0
0 1

]
1√
2
(|00〉+ |11〉 −→ 1√

2
(|00〉+ |11〉) = 1√

2


1
0
0
1

 = |φ+〉

• 01:

[
0 1
1 0

]
1√
2
(|00〉+ |11〉 −→ 1√

2
(|01〉+ |10〉) = 1√

2


0
1
1
0

 = |ψ+〉

• 10:

[
1 0
0 −1

]
1√
2
(|00〉 − |11〉 −→ 1√

2
(|00〉 − |11〉) = 1√

2


1
0
0
−1

 = |φ−〉

• 11: i

[
0 −i
i 0

]
1√
2
(|00〉+ |11〉 −→ 1√

2
(|01〉 − |10〉) = 1√

2


0
1
−1

0

 = |ψ−〉

The four Bell states |φ+〉, |ψ+〉, |φ−〉 and |ψ−〉 are orthonormal and are hence distinguishable by quantum
measurement. Thus after receiving Alice’s transformed qubit (her half of the EPR pair), Bob can measure
both qubits and recover b0b1. Hence one qubit carries two classical bits of information; this is superdense
coding. We saw an example of this above in which Bob recovered |00〉 from |φ+〉 using the Reverse Bell
Circuit depicted in Figure 2.

2.1 Aside: Spectral Decomposition of Pauli Matrices

So far we’ve interpreted the Pauli matrices as a quantum gates. But note that a gate such Z is a Hermitian
operator and as a result can be interpreted as an observable. Somewhat surprisingly (notice the symmetry),
the spectral decomposition [4] of Z is

Z = |0〉 〈0| − |1〉 〈1|

where |u〉 〈v| is Dirac notation [3] for the outer product u⊗ v = uvT of m× 1 vector u and n× 1 vector v,
which yields a m× n matrix3.

We can see that the eigenvalues of Z are 1 and -1, corresponding to eigenvectors |0〉 and |1〉 respectively.
So the measurement operators are the projectors |0〉 〈0| and |1〉 〈1|, This means that a measurement of the
Pauli observable Z is a measurement in the computational basis that has eigenvalue +1 corresponding to |0〉
and eigenvalue -1 corresponding to |1〉.

3The outer product is of vectors u and v is a special case of the tensor product u⊗ v. More generally, the outer product is
an instance of a Kronecker product [5].
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So ok, but why does Z = |0〉 〈0| − |1〉 〈1|? Well, we know that the outer product u⊗ v of a m× 1 vector u
and a n× 1 vector v is defined to be the m× n matrix4 uvT.

To see why Z = |0〉 〈0| − |1〉 〈1|, first recall that |0〉 =

[
1
0

]
and |1〉 =

[
0
1

]
. Then

|0〉 〈0| =
[
1
0

] [
1
0

]T
=

[
1
0

] [
1 0

]
=

[
1 0
0 0

]
and

|1〉 〈1| =
[
0
1

] [
0
1

]T
=

[
0
1

] [
0 1

]
=

[
0 0
0 1

]
so that

|0〉 〈0| − |1〉 〈1| =
[
1 0
0 0

]
−
[
0 0
0 1

]
=

[
1 0
0 −1

]
= Z

2.2 Back to Alice wanting to send a message to Bob

Now suppose Alice want’s to send Bob the message 01. Alice then applies Pauli matrix X to |φ+〉 to get
|ψ+〉:

X |φ+〉 =

[
0 1
1 0

]
1√
2

(|00〉+ |11〉 =
1√
2

(|01〉+ |10〉) = |ψ+〉

Bob can now recover Alice’s message as follows using the Reverse Bell Circuit (Figure 2). That is, Bob can

do the the unitary operations |ψ+〉 CNOT−−−−→ H−→ |01〉, as follows:

|ψ+〉 =
1√
2

(|01〉+ |10〉) −→

1√
2

(|0〉 |1〉+ |1〉 |0〉) CNOT−−−−→ 1√
2

(|01〉+ |11〉) −→

1√
2

(|01〉+ |11〉) H−−→ 1√
2

( 1√
2

(|0〉+ |1〉) |1〉+
1√
2

(|0〉 − |1〉) |1〉
)

=
1√
2

1√
2

(
(|0〉+ |1〉) |1〉+ (|0〉 − |1〉) |1〉

)
=

1

2

(
|01〉+ |11〉+ |01〉 − |11〉

)
=

1

2

(
2 |01〉+ (|11〉 − |11〉)

)
=

1

2
· 2 |01〉

=
2

2
|01〉

= |01〉

Now Bob can measure the two qubits and recover Alice’s message (b0b1 = 01).

Similarly, suppose Alice wants to send the message 10 to Bob. Alice first transforms her qubit as follows

Z |φ+〉 =

[
1 0
0 −1

]
1√
2

(|00〉+ |11〉 =
1√
2

(|00〉 − |11〉) = |φ−〉

4Contrast with the scalar inner product 〈u,v〉 = uTv. Note also that 〈u,v〉 = tr(u ⊗ v), where tr(A) is the ”trace” of
matrix A.
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Alice now sends her qubit to Bob over a quantum channel. Bob can now recover Alice’s message, again using

the Reverse Bell Circuit (|φ−〉 CNOT−−−−→ H−−→ |10〉). Again, why is this?

|φ−〉 =
1√
2

(|00〉 − |11〉) −→

1√
2

(|0〉 |0〉 − |1〉 |1〉) CNOT−−−−→ 1√
2

(|00〉 − |10〉) −→

1√
2

(|00〉 − |10〉) H−−→ 1√
2

( 1√
2

(|0〉+ |1〉) |0〉 − 1√
2

(|0〉 − |1〉) |0〉
)

=
1√
2

1√
2

(
(|0〉+ |1〉) |0〉 − (|0〉 − |1〉) |0〉

)
=

1

2

(
|00〉+ |10〉 − |00〉+ |10〉

)
=

1

2

(
2 |10〉+ (|00〉 − |00〉)

)
=

1

2
· 2 |10〉

= |10〉

Now Bob can measure the two qubits and recover Alice’s message (b0b1 = 10).

Finally, if Alice wants to send 11 to Bob she first transforms her qubit

iY |φ+〉 =

[
0 −i
i 0

]
1√
2

(|00〉+ |11〉 =
1√
2

(|01〉 − |10〉) = |ψ−〉

Alice now transmits her qubit to Bob and Bob applies the Reverse Bell Circuit to recover Alice’s message:

|ψ−〉 =
1√
2

(|01〉 − |10〉) −→

1√
2

(|0〉 |1〉 − |1〉 |0〉) CNOT−−−−→ 1√
2

(|01〉 − |11〉) −→

1√
2

(|01〉 − |11〉) H−−→ 1√
2

( 1√
2

(|0〉+ |1〉) |1〉 − 1√
2

(|0〉 − |1〉) |1〉
)

=
1√
2

1√
2

(
(|0〉+ |1〉) |1〉 − (|0〉 − |1〉) |1〉

)
=

1

2

(
|01〉+ |11〉 − |01〉+ |11〉

)
=

1

2

(
2 |11〉+ (|01〉 − |01〉)

)
=

1

2
· 2 |11〉

=
2

2
|11〉

= |11〉

Now Bob can measure the two qubits and recover Alice’s message (b0b1 = 11).
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3 Quantum Teleportation

Quantum teleportation can be thought of as the dual task to superdense coding. Whereas superdense
coding is concerned with conveying classical information via a qubit, quantum teleportation is concerned
with conveying quantum information with classical bits [1].

3.1 A high-level view of the quantum teleportation algorithm

1. Alice and Bob share an entangled (EPR) pair |φ+〉

2. Alice chooses a qubit |ψ〉 as the message she wants to convey to Bob

3. Alice performs operations on |ψ〉 and |φ+A〉 (Alice’s half of |φ+〉)

4. Alice measures |ψ〉 and her half of |φ+A〉, destroying both of her qubits

5. Alice sends the two classical bits that were the results of her measurements to Bob

6. Bob uses the two classical bits to ”correct” |φ+B〉 (his half of |φ+〉) to be |ψ〉

Alice uses the circuit in Figure 2 to prepare her two qubits (step 3 above). How exactly does this work?
First, notice that the input to the Reverse Bell Circuit shown in Figure 2 is |ψ〉 ⊗ |φ+A〉. To see how this
works, first recall that |ψ〉 = α |0〉+ β |1〉. Then

|ψ〉 ⊗ |φ+A〉 = (α |0〉+ β |1〉)⊗ 1√
2

(|00〉+ |11〉) # defintion of |ψ〉 and |φ+A〉

= 1√
2

(
α(|000〉+ α |011〉) + β(|100〉+ |111〉)

)
# |b0b1b2〉 : b0 is the control, b1 is the target

CNOT−−−−−→ 1√
2

(
α |000〉+ α |011〉) + β(|110〉+ |101〉)

)
# apply CNOT controlled by b0 (target is b1)

H−→ 1√
2

[
α
(

1√
2
|0〉+ |1〉

)
|00〉+ α

(
1√
2
|0〉+ |1〉)

)
|11〉+ # apply H = 1√

2

[
1 1
1 −1

]
β
(

1√
2
|0〉 − |1〉

)
|10〉+ β

(
1√
2
|0〉 − |1〉

)
|01〉

]
= 1√

2
1√
2

[
α
((
|0〉+ |1〉

)
|00〉+

(
|0〉+ |1〉

)
|11〉

)
+ β

((
|0〉 − |1〉

)
|10〉+

(
|0〉 − |1〉

)
|01〉

)]
= 1

2

[
α
(
|000〉+ |100〉+ |011〉+ |111〉)

)
+ β

(
|010〉 − |110〉+ |001〉 − |101〉

)]
= 1

2

[
α |000〉+ α |100〉+ α |011〉+ α |111〉+ β |010〉 − β |110〉+ β |001〉 − β |101〉

]

Now Alice measures her two qubits (|ψ〉 ⊗ |φ+A〉) and observes b0b1 ∈ {00, 01, 10, 11} with P (b0b1) = 1
4 .

Now here’s the amazing thing. If Alice observes 00, she communicates this to Bob (over a classical channel).
As soon as Bob sees the value 00, he knows that his qubit |φ+B〉 = α |0〉+ β |1〉. How does Bob know this?

First, as shown above

|ψ〉 ⊗ |φ+〉 =
1

2

[
α |000〉+ α |100〉+ α |011〉+ α |111〉+ β |010〉 − β |110〉+ β |001〉 − β |101〉

]
(1)

Alice’s measurement of the first two qubits collapses Bob’s qubit to the third qubit5. The only terms in
Equation 1 that are consistent with the first two qubits being |00〉 (resulting from Alice’s measurement) are
α |000〉 and β |001〉. The ”collapsed version” is α |0〉 and β |1〉. Hence Bob knows that his qubit, |φ+B〉, equals
α |0〉+ β |1〉.

5Recall that the original three qubits were |ψ〉 ⊗ |φ+AB〉.

6



Since Alice sent the two bits she saw to Bob, he knows which operations to perform to transform |φ+B〉 → |ψ〉.
In particular, if b0 = 1 Bob should apply Pauli matrix Z to his qubit and I otherwise, and if b1 = 1 he
should apply X and I otherwise. This transforms |φ+B〉, Bob’s qubit, into |ψ〉. This is shown in Table 2.

Amazingly this procedure teleports Alice’s qubit |ψ〉 to Bob using the two classical bits that Alice learned
by measuring her two qubits (|ψ〉 and |φ+A〉).

b0b1 |φ+B〉 Transformation Computation

00 α |0〉+ β |1〉 I

[
α
β

] [
1 0
0 1

] [
α
β

]
=

[
α
β

]
= α |0〉+ β |1〉 = |ψ〉

01 β |0〉+ α |1〉 X

[
β
α

] [
0 1
1 0

] [
β
α

]
=

[
α
β

]
= α |0〉+ β |1〉 = |ψ〉

10 α |0〉 − β |1〉 Z

[
α
−β

] [
1 0
0 −1

] [
α
−β

]
=

[
α
β

]
= α |0〉+ β |1〉 = |ψ〉

11 β |0〉 − α |1〉 XZ

[
β
−α

] [
0 1
1 0

] [
1 0
0 −1

] [
β
−α

]
=

[
α
β

]
= α |0〉+ β |1〉 = |ψ〉

Table 2: Bob’s transformations on receiving classical bits b0b1 from Alice

3.2 Curious Entry for 11 in Table 2?

Note that the row for the result of Alice’s measurement 11 in Table 2 is curious. When Bob sees 11 from
Alice he knows that his remaining qubit |ψ+

B〉, equals −β |0〉+ α |1〉. Why does the table say β |0〉 − α |1〉?

Here is one way to look at this: First, recall that when Bob receives classical bits 11 from Alice he knows
that his qubit, |ψ+

B〉, is

|ψ+
B〉 = −β |0〉+ α |1〉 =

[
−β
α

]

Now, if Bob now wants to transform |ψ+
B〉 → |ψ〉, he would apply ZX as follows

ZX |ψ+
B〉 =

[
1 0
0 −1

] [
0 1
1 0

] [
−β
α

]
=

[
1 0
0 −1

] [
α
−β

]
=

[
α
β

]
= α |0〉+ β |1〉
= |ψ〉

But our rule (Table 2) tells Bob to apply XZ when he sees 11 from Alice. Why? Notice the following:

ZX

[
x0
x1

]
= Z

[
x1
x0

]
=

[
x1
−x0

]
XZ

[
x0
x1

]
= X

[
x0
−x1

]
=

[
−x1
x0

]
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which implies that

ZX

[
x0
x1

]
= −XZ

[
x0
x1

]
(2)

So now let x0 = β and x1 = α. Then

XZ
[
β |0〉 − α |1〉

]
= XZ

[
β
−α

]
= X

[
β
α

]
=

[
α
β

]
= α |0〉+ β |1〉 = |ψ〉

and −
(
β |0〉 − α |1〉

)
= −β |0〉+ α |1〉 −→

ZX
[
− β |0〉+ α |1〉

]
= ZX

[
−β
α

]
= Z

[
α
−β

]
=

[
α
β

]
= α |0〉+ β |1〉 = |ψ〉

The choice of the transformation rules shown in Table 2 and Equation 2 allows us to write β |0〉−α |1〉 rather
than −β |0〉+ α |1〉.

Why do this? One thing it does is make the symmetry in Table 2 more explicit, but hopefully there is a
better reason...

3.2.1 Cloning and/or Faster Than Light Communication?

First, no faster-than-light communication occurs since Bob learns nothing from the changes until Alice
actually sends the two classical bits to him (even though Alice operating on |φ+A〉 instantly affects |φ+B〉).

The No-Cloning Theorem [2] is not violated since, even though Bob has an exact copy of |ψ〉, Alice had to
destroy her copy (by measuring it).

Finally, an interesting point is that neither Alice or Bob ever ”know” what |ψ〉 is (in terms of its actual
amplitudes); all they know is that it was transferred (whatever it was).

4 Bell and CHSH

TBD
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LATEX Source

https://www.overleaf.com/read/hmgrypdcxjhh
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