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1 Introduction

A category is a collection of objects together with a collection of composable morphisms between these objects.
Category theorists use the language ”collection of objects” or ”collection of morphisms” to sidestep some set-
theoretic issues, including: if instead ”the set of objects” was used then in the category of sets the set of objects
would we be the set of all sets, which we know by Russell’s Paradox does not exist [1]. As a result the vague
word ”collection” might be interpreted as meaning ”class” (in the ZF set theory sense [2]).

In any event, a more formal definition of a category is:

Definition 1.1. Category: In category theory, a category is defined by a set of axioms that describe its
fundamental properties and behaviors. These are the components of a category:

(i). Objects: A category consists of a collection of objects. These objects can be anything: sets, groups,
spaces, etc. For example, in the category of sets, the objects are sets themselves. If the collection of
objects in a category is a set then the category is called a ”small” category.

The collection of objects in a category C is denoted simply as C, or sometimes Ob(C). Note that we refer to
a generic category as C, while bold font is used to indicate a specific category. For example, the category
of sets is called Set.

(ii). Morphisms (Arrows): Between every two objects in a category, there exists a collection of morphisms
(also called maps or arrows). Morphisms can represent various mathematical structures like functions,
homomorphisms, transformations, etc.

The collection of morphisms from A to B in C is denoted by C(A,B), or sometimes HomC(A,B). For

A,B ∈ C, a morphism f from A to B is denoted as f ∈ C(A,B), f : A → B, or sometimes A
f−→ B. The

latter form is used in commutative diagrams; see Section ??. All of these forms represent a morphism f

with domain A (sometimes denoted at dom(f)) and codomain B (sometimes denoted as codom(f)).

If the collection of morphisms between every pair of objects in a category is a set then the category is
called ”locally small”. Said another way, if for all A,B ∈ C the collection of morphisms C(A,B) is a set
then C is locally small.

(iii). Identity Morphisms: For each object A in the category, there exists an identity morphism denoted
as idA or simply 1A. The identity morphism idA : A → A is the morphism that ”does nothing” when
composed with other morphisms. It serves as an identity element in the category.

(iv). Composition of Morphisms: Morphisms in a category can be composed. If f : A→ B and g : B → C
are morphisms in the category, then there exists a composite morphism denoted as g ◦ f : A→ C, which
represents the composition of f followed by g. One consequence of this requirement: categories are closed
under ◦.

1

mailto:dmm613@gmail.com


(v). Associativity of Composition: Composition of morphisms is associative. That is, if f : A → B,
g : B → C, and h : C → D are morphisms in the category, then h ◦ (g ◦ f) = (h ◦ g) ◦ f .

These axioms capture the essential structure of a category and form the basis for studying relationships and
structures across various mathematical domains using category theory.

1.1 Morphisms

1.1.1 Commutative Diagrams

A B

C

f

g◦f
g

1.1.2 Aside: groups, monoids, and categories

Here’s a crazy (and beautiful) fact: A group is essentially the same thing as a category that has only one object
and in which all the morphisms are isomorphisms.

Ok, but why?

Well, first consider a category C with just one object. Call that object A. That is, the class Ob(C) contains
only one object, namely, A. Since C only has one object all of C’s morphisms are in HomC(A,A).

Here the category C consists of

• the class of objects C consisting of the single object A

• the class of morphisms C(A,A) consisting of isomorphisms f : A→ A

• an associative composition function ◦ : C(A,A)× C(A,A)→ C(A,A)

• a two-sided unit 1A

Interestingly, these four conditions would make C(A,A) into a group except for inverses. However, saying that
every morphism in C is an isomorphism implies that every element of C(A,A) has an inverse (with respect to
◦). Hence (C(A,A), ◦) is a group.

So if (G, ·) is the group (C(A,A), ◦) then we have this correspondence:

Category Group

Category C with single object A Corresponding group G
Morphisms in C Elements of G
◦ ∈ C · ∈ G
1A ∈ C 1 ∈ G

The diagram of C looks something like

A
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where the arrows represent the different A→ A morphisms in C. These A→ A morphisms are the elements of
the group G.

Summary: A group is a category with the special properties that all of the morphisms are invertible and there
is only one object.

By a similar argument, a category C with one object, call it A, is the same thing as a monoid. This is because
unlike a group, every element of a monoid is not required to have an inverse. Hence the morphisms in C(A,A)
are not required to be isomorphisms for C to be a monoid.

1.1.3 Monomorphisms

Before looking at the definition of monomorphism, it is useful to look at the definition of injectivity for sets:

Definition 1.2. Injectivity: A function f : B → C is said to be injective if for all b1, b2 ∈ B we have

f(b1) = f(b2)⇒ b1 = b2

This standard definition of an injective mapping (aka 1:1 mapping) is not suitable for category theory because,
among other things, it looks inside the objects. This is an issue because objects in category theory have ”nothing
inside them”, that is, they have no internal structure. In the case of the Definition 1.2, b1 and b2 are ”inside”
the object B.

For functions between sets, injectivity is an important concept. But for maps in an arbitrary category, injectivity
might not make sense. So how can we define a similar but more general concept for categories using only
morphisms? Consider the following commutative diagram:

A B C
g1

g2

f

Since this diagram commutes we know that f ◦g1 = f ◦g2. f is called a monomorphism if it adheres to Definition
1.3.

Definition 1.3. Monomorphism: Consider a category C with morphisms g ∈ C(A,B) and f ∈ C(B,C). Then
a morphism f ∈ C(B,C) is called a monomorphism if for all g1, g2 ∈ C(A,B) we have

f ◦ g1 = f ◦ g2 ⇒ g1 = g2 (1)

This property is also called left cancellation.

Although monomorphism is defined solely in terms of morphisms (and not elements), since the above diagram
commutes (f ◦ g1 = f ◦ g2) both g1 and g2 must map to elements in A to the same element in B. This suggests
that monomorphism is at least in part about retaining uniqueness (or the lack thereof) in the domain in the
codomain (the same is true for injectivity). We can see this since we know by Equation (1) and the law of
contraposition [3] that

g1 6= g2 ⇒ f ◦ g1 6= f ◦ g2 (2)

One way to interpret Equation (2) is that different elements in the domain will be different in the codomain.
That is, the uniqueness of g1 and g2 is preserved by f . The same kind of argument can be made for injectivity.

Finally, note that while injectivity seems to be the same thing as monomorphism (and injective functions
are monomorphisms in Set), monomorphism and injectivity are not necessarily the same. Said another way,
monomorphism is the generalized-element analogue of injectivity.
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1.1.4 Epimorphisms

1.1.5 Isomorphisms

1.1.6 Functors

1.2 Natural Transformations

Definition 1.4. Natural Transformation: Let F,G : C → D be functors from a category C to a category D.
A natural transformation η from F to G is a family of morphisms in D, one for each object A in C, such that

ηA : F (A)→ G(A)

The morphism ηA is called the component of η at object A. In addition, for any morphism f ∈ C(A,B) the
following diagram must commute:

F (A) F (B)

G(A) G(B)

F (f)

ηA ηB

G(f)

Here F (f) and G(f) are the mappings of the morphism f ∈ C(A,B) under the functors F and G (respectively),
where F (f) ∈ D(F (A), F (B)) and G(f) ∈ D(G(A), G(B)). ηA and ηB are natural transformations with
ηA ∈ D(F (A), G(A)) and ηB ∈ D(F (B), G(B)).

Commutativity here means that going from F (A) to G(B) via F (f) and ηB is the same as going from F (A) to
G(B) via ηA and G(f). More specifically, commutativity requires that for any f ∈ C(A,B) we have

G(f) ◦ ηA = ηB ◦ F (f) (3)

Note: I have seen Equation (3) abbreviated as Gη = ηF .

2 Conclusions
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LATEX Source

https://www.overleaf.com/read/wnptmrwwfjgv#a36a79
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Appendix A: A Few Algebraic Structures

Structure ABO1 Identity Inverse Distributive2 Commutative3 Comments

Semigroup X no no N/A no (S, ◦)
Monoid X X no N/A no Semigroup plus identity ∈ S
Group X X X N/A no Monoid plus inverse ∈ S
Abelian Group X X X N/A X(◦) Commutative group
Ring+ X X X X X(+) Abelian group under +
Ring∗ X yes/no no X no Monoid under ∗
Field(+,∗) X X(+, ∗) X(+, ∗) X X(+, ∗) Abelian group under + and ∗
Vector Space X X(+, ∗) X(+) X X(+) Abelian group under +, scalars ∈ Field
Module X X(+, ∗) X(+) X X(+) Abelian group under +, scalars ∈ Ring

Table 1: A Few Algebraic Structures and Their Features

where

1. ABO: Associative Binary Operation

• (x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ S
• x ◦ y ∈ S for all x, y ∈ S (S is closed under ◦)

2. Distributive: Distributive Property

• Left Distributive Property: x ∗ (y + z) = (x ∗ y) + (x ∗ z) for all x, y, z ∈ S
• Right Distributive Property: (y + z) ∗ x = (y ∗ x) + (z ∗ x) for all x, y, z ∈ S
• ∗ is distributive over + if ∗ is left and right distributive

3. Commutative: Commutative Property

• x ◦ y = y ◦ x for all x, y ∈ S
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