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1 Introduction

2 Vector Spaces: Linear Algebra vs. the Fourier Series

Here we will use the convention that the constant ¢ denotes the constant function f(x) = ¢, for all , when the
context indicates that ¢ is a function. On the other hand, the notation c¢- ¢ denotes the scalar multiplication
of the scalar value ¢ with itself. Consequentially, I will use 1 to represent f(z) = 1 and use context to
disambiguate the function f(z) from the scalar value 1. For example, in Equation (1)), (1,1) = (f(z), f(z))
(1 represents the constant function f(x) = 1), while the notation 1 -1 represents the scalar multiplication of
the scalar value 1 with itself.

What Linear Algebra Fourier Series
Vector Space R" Piecewise smooth 27-periodic functions on R
Inner Product (v) =S u, (F(8), g1)) = % / Ft)g(t) dt
i=1 7 e

Orthonormal Basis (R;z) {(1,0,0),(0,1,0),(0,0,1)} {1,cosmt,sinnt}, m,n € N\{0}
Representation of a Vector in the Basis x=>aw 1) = % +> ancosnt + Y bysinnt

=1 n=1 n=1

. s s ag = (f(t),1)
Coefficients are Projections a; = (x,e;) am = (f(1), cos mt)
by = (f(t),sinmt)

Table 1: Vector Spaces: Linear Algebra vs. Fourier Series

2.1 Orthonormal Bases and the Fourier Series

Some people (specifically Rahul Narain (@narain@mathstodon.xyz)) feel that the orthonormal basis for the
Fourier series should be {1, /2 cosmt,+/2sinnt}, m,n € N\{0}. Ok, but why? Well, notice that (i1, @) = 1
for all unit vectors G. However, (1,1) = 2, since
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Why does Equation hold? Consider

1 ™
1,1y = = / F@)f(t)dt # since in 1 = f(¢) and the definition of the inner product (Table
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On the other hand, (cosnt, cosnt) = — /(3052 ntdt = —m = 1. In the same way, (sinnt,sinnt) = 1.
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We can also see that the vectors in the basis {1, cosmt,sinnt}, m,n € N\{0} are orthogonal:
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Similarly, (1, cosnt) = (cos mt,sinnt) = 0.

3 Conclusions
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