A Few Notes on the Fourier Series

David Meyer
dmm613@gmail.com

Last update: December 22, 2023

1 Introduction

2 Vector Spaces: Linear Algebra vs. the Fourier Series

Here we will use the convention that the constant c denotes the constant function $f(x)=c$, for all x, when the context indicates that c is a function. On the other hand, the notation $c \cdot c$ denotes the scalar multiplication of the scalar value c with itself. Consequentially, I will use 1 to represent $f(x)=1$ and use context to disambiguate the function $f(x)$ from the scalar value 1. For example, in Equation $\sqrt[1]{1},\langle 1,1\rangle=\langle f(x), f(x)\rangle$ (1 represents the constant function $f(x)=1$), while the notation $1 \cdot 1$ represents the scalar multiplication of the scalar value 1 with itself.

What	Linear Algebra	Fourier Series
Vector Space	\mathbb{R}^{n}	Pieceevise smooth 2π-periodic functions on \mathbb{R}
Inner Product	$\langle\mathbf{u}, \mathbf{v}\rangle=\sum_{i=1}^{n} u_{i} v_{i}$	$\langle f(t), g(t)\rangle=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) g(t) d t$
Orthonormal Basis $\left(\mathbb{R}^{3}\right)$	$\{(1,0,0),(0,1,0),(0,0,1)\}$	$\{1, \cos m t$, sin $n t\}, m, n \in \mathbb{N}\{\{0\}$
Representation of a Vector in the Basis	$\mathbf{x}=\sum_{i=1}^{n} a_{i} a_{i}$	$f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n t+\sum_{n=1}^{\infty} b_{n} \sin n t$
Coefficients are Projections	$a_{i}=\left\langle\mathbf{x}, \mathbf{e}_{i}\right\rangle$	$a_{0}=\langle f(t), 1\rangle$ $a_{m}=\langle f(t)$ cos $m t\rangle$ $b_{m}=\langle f(t), \sin m t\rangle$

Table 1: Vector Spaces: Linear Algebra vs. Fourier Series

2.1 Orthonormal Bases and the Fourier Series

Some people (specifically Rahul Narain (@narain@mathstodon.xyz)) feel that the orthonormal basis for the Fourier series should be $\{1, \sqrt{2} \cos m t, \sqrt{2} \sin n t\}, m, n \in \mathbb{N} \backslash\{0\}$. Ok, but why? Well, notice that $\langle\hat{\mathbf{u}}, \hat{\mathbf{u}}\rangle=1$ for all unit vectors $\hat{\mathbf{u}}$. However, $\langle 1,1\rangle=2$, since

$$
\begin{equation*}
\langle 1,1\rangle=\frac{1}{\pi} \int_{-\pi}^{\pi} 1 \cdot 1 d t=\frac{1}{\pi} \int_{-\pi}^{\pi} d t=\left.\frac{1}{\pi} t\right|_{-\pi} ^{\pi}=\frac{1}{\pi}(\pi-(-\pi))=\frac{1}{\pi} 2 \pi=2 \tag{1}
\end{equation*}
$$

Why does Equation (1) hold? Consider

$$
\begin{array}{rlrl}
\langle 1,1\rangle & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) f(t) d t & & \text { \# since in } 1=f(t) \text { and the definition of the inner product (Table } \mathbb{1}) \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} 1 \cdot 1 d t & & \text { \# since in } f(t)=1 \text { for all } t \in \mathbb{R} \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} d t & & \text { \# since } 1 \cdot 1=1 \\
& =\left.\frac{1}{\pi} t\right|_{-\pi} ^{\pi} & & \text { \# by the FToC [2] } \\
& =\frac{1}{\pi}(\pi-(-\pi)) & & \text { \# evaluate at the end points } \\
& =\frac{1}{\pi} 2 \pi & & \text { \# simplify } \\
& =2 & \text { \# }\langle 1,1\rangle=2[1]
\end{array}
$$

On the other hand, $\langle\cos n t, \cos n t\rangle=\frac{1}{\pi} \int_{-\pi}^{\pi} \cos ^{2} n t d t=\frac{1}{\pi} \pi=1$. In the same way, $\langle\sin n t, \sin n t\rangle=1$.
We can also see that the vectors in the basis $\{1, \cos m t, \sin n t\}, m, n \in \mathbb{N} \backslash\{0\}$ are orthogonal:

$$
\langle 1, \sin n t\rangle=\frac{1}{\pi} \int_{-\pi}^{\pi} 1 \sin n t d t=\frac{1}{\pi} \int_{-\pi}^{\pi} \sin n t d t=0
$$

Similarly, $\langle 1, \cos n t\rangle=\langle\cos m t, \sin n t\rangle=0$.

3 Conclusions

Acknowledgements

Thanks to Dave Neary (@dneary@mathstodon.xyz), Grégoire Locqueville (@glocq@mathstodon.xyz) and Alex (@alexmath@tech.lgbt) for their insightful comments on the meaning of the symbol 1 in the Fourier series basis.

IATEX Source

https://www.overleaf.com/read/mtpfwbpmwcpg\#b65e5d

References

[1] Eric Platt. Why are the basis functions of the Fourier series orthogonal? https://www.quora.com/ Why-are-the-basis-functions-of-the-Fourier-series-orthogonal/answer/Eric-Platt-9, 2020. [Online; accessed 22-December-2023].
[2] Wolfram MathWorld. Fundamental Theory of Calculus. https://mathworld.wolfram.com/ FundamentalTheoremsofCalculus.html, 2023. [Online; accessed 8-May-2023].

