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1 Introduction

A Kepler triangle is a right triangle whose sides are related by a geometric progression [2, 5] where the ratio
of the progression is

√
φ, the square root of the golden ratio φ [3]. The Kepler triangle has sides 1 :

√
φ : φ.

The triangle is named after the famous German astronomer and mathematician Johannes Kepler [4].

More generally, if the ratio of the geometric progression is
√
x, then the sides of the triangle are in the ratio

1 :
√
x : x. From this we know (by the Pythagorean theorem [1]) that 12 + (

√
x)2 = x2. Simplifying we

get 1 + x = x2, or in a more standard form x2 − x − 1 = 0. This polynomial turns out to be the minimal
characteristic polynomial of the golden ratio φ, so we know that x = φ.

Interestingly, a triangle with sides k, k
√
x, and kx is also a Kepler triangle. This is because the ratio of the

sides of this triangle is k : k
√
x : kx, and if we divide each side by k we see that the ratio of this triangle’s

sides is 1 :
√
x : x. �

We can also see this by considering following triangle:

k
√
x

k kx

By the Pythagorean theorem we know that

(kx)2 = (k
√
x)2 + k2 # by the Pythagorean theorem

⇒ (kx)2 − (k
√
x)2 − k2 = 0 # subtract

(
(k
√
x)2 + k2

)
from both sides

⇒ k2x2 − k2x− k2 = 0 # square terms

⇒ k2(x2 − x− 1) = 0 # factor out k2

⇒ x2 − x− 1 = 0 # divide both sides by k2

And again, we know that x2 − x− 1 is φ’s minimal characteristic polynomial and so x = φ = 1+
√
5

2 and the
ratio of the sides of this triangle is 1 :

√
φ : φ. �
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2 Conclusions
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https://www.overleaf.com/read/btgfkkdzktbt#adfb58
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