# A Few Notes on Kepler Triangles 

David Meyer<br>dmm613@gmail.com

Last Update: May 16, 2024
Initial Version: May 10, 2024

## 1 Introduction

A Kepler triangle is a right triangle whose sides are related by a geometric progression [2, 5] where the ratio of the progression is $\sqrt{\phi}$, the square root of the golden ratio $\phi$ 3. The Kepler triangle has sides $1: \sqrt{\phi}: \phi$. The triangle is named after the famous German astronomer and mathematician Johannes Kepler [4].

More generally, if the ratio of the geometric progression is $\sqrt{x}$, then the sides of the triangle are in the ratio $1: \sqrt{x}: x$. From this we know (by the Pythagorean theorem [1]) that $1^{2}+(\sqrt{x})^{2}=x^{2}$. Simplifying we get $1+x=x^{2}$, or in a more standard form $x^{2}-x-1=0$. This polynomial turns out to be the minimal characteristic polynomial of the golden ratio $\phi$, so we know that $x=\phi$.

Interestingly, a triangle with sides $k, k \sqrt{x}$, and $k x$ is also a Kepler triangle. This is because the ratio of the sides of this triangle is $k: k \sqrt{x}: k x$, and if we divide each side by $k$ we see that the ratio of this triangle's sides is $1: \sqrt{x}: x$.

We can also see this by considering following triangle:


By the Pythagorean theorem we know that

$$
\begin{aligned}
(k x)^{2} & =(k \sqrt{x})^{2}+k^{2} & & \text { \# by the Pythagorean theorem } \\
& \Rightarrow(k x)^{2}-(k \sqrt{x})^{2}-k^{2}=0 & & \text { \# subtract }\left((k \sqrt{x})^{2}+k^{2}\right) \text { from both sides } \\
& \Rightarrow k^{2} x^{2}-k^{2} x-k^{2}=0 & & \text { \# square terms } \\
& \Rightarrow k^{2}\left(x^{2}-x-1\right)=0 & & \text { \# factor out } k^{2} \\
& \Rightarrow x^{2}-x-1=0 & & \text { \# divide both sides by } k^{2}
\end{aligned}
$$

And again, we know that $x^{2}-x-1$ is $\phi$ 's minimal characteristic polynomial and so $x=\phi=\frac{1+\sqrt{5}}{2}$ and the ratio of the sides of this triangle is $1: \sqrt{\phi}: \phi$.

## 2 Conclusions

## Acknowledgements

## ETEX Source

https://www.overleaf.com/read/btgfkkdzktbt\#adfb58

## References

[1] Wikipedia Contributors. Pythagorean trigonometric identity - Wikipedia, the free encyclopedia, 2018. [Online; accessed 12-November-2018].
[2] Wikipedia Contributors. Geometric Series - Wikipedia, The Free Encyclopedia. https://en. wikipedia.org/w/index.php?title=Geometric_series\&oldid=1097138657, 2022. [Online; accessed 11-July-2022].
[3] Wikipedia Contributors. Golden Ratio - Wikipedia, The Free Encyclopedia. https://en.wikipedia. org/w/index.php?title=Golden_ratio\&oldid=1150269490, 2023. [Online; accessed 7-May-2023].
[4] Wikipedia contributors. Johannes Kepler - Wikipedia, The Free Encyclopedia. https://en. wikipedia.org/w/index.php?title=Johannes_Kepler\&oldid=1222947599, 2024. [Online; accessed 10-May-2024].
[5] Wikipedia contributors. Kepler triangle - Wikipedia, The Free Encyclopedia. https://en.wikipedia. org/w/index.php?title=Kepler_triangle\&oldid=1193796348, 2024. [Online; accessed 10-May-2024].

