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1 Introduction

2 Linear Subspaces

Definition 2.1. Linear Subspace: Let U ⊆ Rn with U 6= ∅. Then U is called a linear subspace of Rn

if U is closed under linear combination [3]. More specifically, let u(1),u(2), . . . ,u(k) be vectors in U and let
λ1, λ2, . . . , λk be scalars in R. Then for U to be a linear subspace we need that

k∑
j=1

λju
(j) ∈ U

That is, all linear combinations of vectors in U and scalars in R are also in U .

2.1 Characteristics of Linear Subspaces

U ⊆ Rn is a (linear) subspace iff

(a) 0 ∈ U

(b) u ∈ U and λ ∈ R⇒ λu ∈ U

(c) u,v ∈ U ⇒ u + v ∈ U

For example, consider a line U ⊆ R2. Then for all u,v ∈ U and λ ∈ R we have λu ∈ U and u + v ∈ U .
Thus U is a linear subspace of R2. This is shown (hopefully) in Figure 1.

x

y

U ⊆ R2

u
v=λu

w=u+v

Figure 1: The line U is a linear subspace of R2
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3 Linear Maps

In linear algebra a linear map is a mapping V→W between two vector spaces which preserves the operations
of vector addition and scalar multiplication. Interestingly, the same names and the same definition are also
used for the more general case of modules over a ring (need module homomorphism cite).

Definition 3.1. Linear Map: A function f : Rn → Rm is called linear if for all x,y ∈ Rn and λ ∈ R:

(a) f(x + y) = f(x) + f(y) # vector addition is distributive

(b) f(λx) = λf(x) # scalar multiplication is compatible (aka homogeneity)

Note that in Definition 3.1 (a) the vector addition on the left-hand side is in Rn while on the right-hand side
the vector addition is in Rm. Similarly, in Definition 3.1 (b) the scalar multiplication on the left-hand side
is in Rn while the scalar multiplication on the right-hand side is in Rm.

3.1 Examples

1. f : R→ R by f(x) = x

This is linear because

• f(x+ y) = x+ y = f(x) + f(y)

• f(λx) = λx = λf(x)

2. f : R→ R by f(x) = x2

This is not linear because f(3·1) = f(3) = 9 and for f a linear map we have f(3·1) = 3·f(1) = 3·1 = 3.
But 9 6= 3 so f is not linear.

3. f : R→ R by f(x) = x+ 1

This is not linear because f(0 · 1) = 1 but 0 · f(1) = 0 and 1 6= 0.

Aside: f(x) = x+ 1 looks linear but under this definition ((a) and (b) above) f is not linear.

3.2 Relationship between linear maps and group homomorphism

As we saw above, in linear algebra, a linear map is a function between two vector spaces that preserves the
vector space structure, i.e., it preserves addition and scalar multiplication. A group homomorphism, on the
other hand, is a function between two groups that preserves the group structure, i.e., it preserves the group
operation.

3.2.1 Group Homomorphism

Let (G, �) and (H, ◦) be groups. Common usage is to use G to refer to (G, �). Similarly, H will refer to
(H, ◦). Then a mapping φ : G→ H is called a homomorphism iff

φ(x � y) = φ(x) ◦ φ(y) ∀x, y ∈ G

Essentially, a homomorphism φ : G → H is a way of exploring the structure of H by varying G using
structure preserving transformations. Specifically, φ preserves the group structure.
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Example 3.1. Define a map

φ : G→ H

where G = Z and H = Z2 = Z/2Z is the standard group of order two. Then define φ : Z→ Z2 by the rule

φ(x) =

{
0 if x is even

1 if x is odd

It is not too hard to check that φ is a homomorphism. Suppose that x and y are two integers. Then there
are four cases:

• x and y are both even

In this case φ(x+y) = 0 (even + even = even). Here φ(x)+φ(y) = 0+0 = 0 so φ(x+y) = φ(x)+φ(y) =
0 + 0 = 0.

• x and y are both odd

In this case φ(x + y) = 0 (odd + odd = even). Here φ(x) + φ(y) = 1 + 1 = 2 mod 2 = 0, so
φ(x+ y) = φ(x) + φ(y) = 1 + 1 = 2 mod 2 = 0.

• x is even and y is odd or x is odd and y is even

In this case one is even and the other is odd and x + y is odd. Here φ(x + y) = 1 and φ(x) + φ(y) =
1 + 0 = 1 so φ(x+ y) = φ(x) + φ(y).

Thus φ is a homomorphism. Note that in this example � = + (normal addition in Z) and ◦ = + (addition
mod 2 in Z2).

Not surprisingly, there is a close relationship between linear maps and group homomorphisms because any
linear map between two vector spaces can be seen as a group homomorphism between the additive groups
of those vector spaces. Specifically, if we have a linear map f : V →W between two vector spaces V and
W over the same field F, then we can define a group homomorphism from φ : (V,+)→ (W,+) by sending
each vector v ∈ V to f(v) ∈W. This is a group homomorphism because f preserves addition (its a linear
map, Definition 3.1 (a) above) and hence it preserves the group structure.

On the other hand, any group homomorphism between two additive groups of vector spaces can be seen as a
linear map between those vector spaces. Specifically, if we have a group homomorphism φ : (V,+)→ (W,+)
between two additive groups of vector spaces, then we can define a linear map from f : V to W by sending
each vector v ∈ V to φ(v) ∈ W. This is a linear map because φ preserves vector addition and scalar
multiplication and therefore it preserves the structure of the underlying vector spaces.

So basically, every linear map f between two vector spaces over the same field can be thought of as a
group homomorphism φ between the additive groups of those vector spaces, and every group homomorphism
between two groups can be thought of as a linear map between the vector spaces over the same field that are
associated with those groups. So a linear map is a homomorphism of vector spaces. However, if the vector
spaces have additional structure, for example a ring, an algebra, or a lie algebra, then a linear map is not
always a homomorphism of those additional structures.

4 Matrices Induce Linear Maps

Consider a matrix A ∈ Rm×n and x ∈ Rn, and define fA : Rn → Rm by x 7→ Ax.
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Proposition 4.1. fA is a linear map

Ok, but why? Here is one way to look at it: fA a linear map means

• fA(x+y) = fA(x) +fA(y)⇒ A(x+y) = Ax+Ay # fA is distributive (Definition 3.1 (a))

• fA(λx) = λfA(x)⇒ A(λx) = λAx # fA is compatible (Definition 3.1 (b))

Here’s an example: Let A ∈ Rm×2 with A =

a1 a2

 and let x =

(
x1
x2

)
and y =

(
y1
y2

)
be vectors in R2.

Then

A(x + y) =

a1 a2

((x1x2
)

+

(
y1
y2

))
# definitions of A, x, and y

=

a1 a2

(x1 + y1
x2 + y2

)
# matrix (vector) addition in R2

=

a1
(x1 + y1

)
+

a2
(x2 + y2

)
# definition of the matrix product

=

a1
x1 +

a1
 y1 +

a2
x2 +

a2
 y2 # matrix product distributes over addition

=

a1
x1 +

a2
x2 +

a1
 y1 +

a2
 y2 # vector addition is commutative

=

a1 a2

(x1x2
)

+

a1 a2

(y1y2
)

# definition of the matrix product

=

a1 a2

x +

a1 a2

y # x =

(
x1
x2

)
and y =

(
y1
y2

)

= Ax + Ay # A =

a1 a2



So A(x+y) = Ax+Ay. Here we see that the matrix A, which is just a table of real (or complex) numbers,
induces the abstract linear map fA (and vice versa) [1].

Suppose f is a linear map and let x =
(
x1, x2, . . . , xn

)
be a vector in Rn. Then define the canonical unit

vectors in Rn as follows:
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Definition 4.1. Canonical Unit Vectors: The canonical unit vectors in Rn are the vectors ei

B = {ei : 1 ≤ i ≤ n}

where ei is the ith unit vector, that is, it has a one in the ith coordinate (position) and zeros everywhere
else1. The set B forms a basis, sometimes called the canonical basis, for the vector space Rn.

The basis vectors ei have column vector format

e1 =


1
0
...
0
0

, e2 =


0
1
...
0
0

, . . ., en−1 =


0
0
...
1
0

, en =


0
0
...
0
1



Here is an interesting observation about linear maps and basis vectors:

f(x) = f(x1e1 + x2e2 + . . .+ xnen) # x is a linear combination of basis vectors

= f(x1e1) + f(x2e2) + . . .+ f(xnen) # f a linear map ⇒ f is distributive (Definition 3.1 (a))

= x1f(e1) + x2f(e2) + . . .+ xnf(en) # f a linear map ⇒ f is compatible (Definition 3.1 (b))

Since f(x) = x1f(e1) +x2f(e2) + . . .+xnf(en) apparently in order to understand f you only have to know
how f maps the basis vectors.

5 Conclusions

6 Acknowledgements

LATEX Source

https://www.overleaf.com/read/pmsddwthrchw
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Appendix A: Draw Some Matrices

An×m =


a1
a2
...
an



AT =

 a1 a2 . . . an



Bn×k =


b1

b2
...

bn



AB := ATB =

 a1 a2 . . . an




b1

b2
...

bn



=


aT1 b1 aT1 b2 . . . aT1 bk

aT2 b1 aT2 b2 . . . aT2 bk
...

...
. . .

...

aTmb1 aTmb2 . . . aTmbk



=


〈a1, b1〉 〈a1, b2〉 . . . 〈a1, bk〉
〈a2, b1〉 〈a2, b2〉 . . . 〈a2, bk〉

...
...

. . .
...

〈am, b1〉 〈am, b2〉 . . . 〈am, bk〉


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AT =


aT1

aT2
...

aTn


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