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1 Introduction

These notes started life as an experiment in drawing matrices and their shapes (see Sec-
tion . However, it has evolved into a more ad-hoc collection of notes covering a few
topics in quantum mechanics. So its a WIP. We start with a review of Orthonormality,
Completeness, and Projection...

2 Orthonormality, Completeness, and Projection
As we saw above, unitary matrices are matrices which satisfy

U l=ul (1)
Unitary matrices are ubiquitous and important in quantum mechanics, in particular be-

cause they have the following unique and useful properties: Orthonormality, Completeness,
and Projection [3]. We'll briefly look at each of these below!}

2.1 Orthornomality

We can rewrite Equation [1] as
ulu=1 (2)

where I is the identity matrix. What Equation [2]is really telling us is that the columns of
the matrix U form a set of orthnormal vectors.

T will use the notation (xl, . ,mn)T and [m, .. ,mn}T interchangably in the following discussion.



Note that we can interpret a matrix as a row vector where the entries are the columns v;
of U. That is

U:[vl Vo ... VN]

Similarly, U~! can be written as a column vector where the entries are the row vectors v;r:
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T
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Now we can see that
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or in Dirac notation [2]
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What we can notic here is that since (UTU);; = (U~1U);; = §;;, the columns of U can
be written as the inner product (v;|vj) = ;5. Said another way, the vectors v; form an
orthonormal set. In particular, if V = {v;} is an orthonormal set, then for v;,v; € V, the
inner product (v;|v;) = d;;. See Section [ for a brief discussion on matrix shapes.

2.2 Completeness

From UTU = I we saw that we could derive orthonormality. But we also expect that
UU' = I. It turns out that we can get something interesting by observing this. In
particular

—<U1‘_
(va]
ULTJr — [|U1> ”Ug) |U3> .. ‘Q}Nﬂ <U3‘
L(on]]
285 1 : 1 wheni=j
0i; is the Kronecker Delta function [4], d;; = { 0 wheni% ]



If we multiply this out we find that
N
[01) (0] + [v2) (wa| + -+ + o) (un] =D Jvi) (vi] =T (3)
i1

Equation [3| is known as the completeness relation. Completeness turns out to be useful
and is a sort of flip-side of orthonormality. While orthonormality is kind of an ”inner
product” (UTU), completeness is like an outer product in that UUT is a sum over i of
|vi) (v;| (although the shapes are reversed). Interestingly, the trace of the outer product of
two n X 1 column vectors a and b is Tr(|a) (b]) = (al|b).

2.3 Projection

To get an idea of what projection is all about, consider the expansion of a vector into
components in a basis:

N
|w) = Zwi |vi) (4)
i=1

Now, if the set of vectors basis vectors {v;} are orthonormal, then we know that

w; = (v;|w)

and substituting back into Equation [4| we get

N

jw) =) (vilw) [v;)

i=1

Interestingly, there is another way to derive this result: use the completeness relation,
which is simply a fancy but useful way to write I:

N N
jw) =1 |w) = (Z |vi) <Uz‘!> |w) = Z [vi) (vi|w)

In words, we were able to use the completeness relation to project a vector onto its com-
ponents in a particular basis.

For example, we know that for vectors |a) and |3), we can take the inner product between
them by using their components in a basis {v; }:



N
(@lg) =3 aiy
=1

where a; = (v;]la) and b; = (v;|3). Interestingly, we can again derive this using the
completeness relation:
(alB) = (alI]B) # (alB) = (al|B) = (o I|5)

N N
= (o] (; |vi) <vi|> By # 2 Jvi) (vl = I (Equation 3)
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3 Expectation Values

Consider an observable A in the pure state |¢)). The expectation value (A) , 18 given by

(A)y = (VI AlY) ()

where dim((¢)|) =1 x n, dim(A) = n x n, and dim(|¢p)) =n x 1.

So why is (A)  an expectation? Well, first, if A is an observable for a system with a discrete
set of values {a1,aq,...,an}, then this observable is represented by a Hermitean operator
A that has these discrete values as its eigenvalues, and associated eigenstates {lan}), for
n=1,2,3,...satisfying the eigenvalue equation A |an) = an |ay). I drop the "hat” in most
of the below.



First, observe that (an| A = ay, (a,|. Why?

Alay) = aplay) # eigenvector equation: AX = AX
— (Ala))T = (an|an)T # conjugate transpose both sides
— Ja) Al =la)al  #(AB) = Bial
— Ja,)' AT = ah |an) # rearrange (al, is a scalar) 6
— a)TA  =al]an)! # A is Hermitian so A = Af (©)
— Ja)'A  =a}|an)! # al, = a* (an is a scalar)
= (an| A = ay, (an]| # ’an>T = (an|
— (an|A = an (an| # apx = ay,
Why is @), = a,? Well, consider
AX = AX # eigenvector equation
= AX)T =0x)f # take conjugate transpose of both sides
— XTAT = XM\ # (AB)! = BT Af
= XTAT = )\TXT # rearrange (A' is a scalar)
— XAt =Xt # AT = \* (X is a scalar) (7)
= XA =\ XT # AT = A since A is Hermitian
= XA = XT)* # rearrange
— XTAX =XT\X # multiply both sides by X

Now notice that if we multiply both sides of the original eignenvector equation AX = A X
by XT we get XTAX = XTAX. We know from that XTAX = XTA\*X and therefore
that XTA*X = XTAX. This implies that \* = \, so A\ € R. Similarly ay = ap so an € R.

Another way to look at this is to assume the computational basisﬁ and then

3@ doesn’t seem to require this assumption.
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# A is Hermitian so A = Af
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# Al = <an’

(ax]

# (n| selects the n'" element of A, (a,|

In any event, now we have (an| A = ay, (a,|. So we can observe that

(A)y

So the expectation value for the result of a measurement represented by a self-adjoint
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# definition of (4),, for pure state [t))
47 A=A

N

# > lan) (an] =1 (Equation
n=1

# rearrange

# (an| A = ay, (an| (see above)

# rearrange

# | (Ylan) |2 = (Wlan) (V]an)" = (V]an) (an|v)

# | (¥|an) |* = p(ay), the probability of observing a,,

#E[X] =

=

P(Xn) Xy

operator A, (A),, is the weighted average of all possible outcomes under A, that is, E[A].



4 Shapes

One way to visualize (4),, is

(A = [oeenn ]
—_———
1xXn PN P PR
—_——————
nxn nx1
— C

where ¢ € C.

The density operator p for pure state |1) is given by p = [¢) (|. The shape of p is

The shape of the inner product of two n x 1 column vectors (u,v) = (u|v) = ulv is

uv—>[ ......... ] ] —ec

Ty

where ¢ € C. The shape of the outer product u® v = |u) (v| = uv"’ is

nx1 nxn



5 The Density p and the Trace of an Operator D

So p is an nxn linear operator with Tr(p) = Tr(|v) (¥|) = (¥|v). In addition, Tr(|i;) (i) =
(Yilhi) = 04 = 1, and if {|¢);)} is an orthonormal basis then Tr(|¢);) (¥;|) = (¥ile;) = &5

The density matrix [I] p has the following important properties:

Projection: P’ =p
Hermiticity: ot =p
Normalization: Tr(p) =1
Positivity: p>1
n
The trace of an operator D, Tr(D), is defined to be Tr(D) = >_ (n| D|n). Now, suppose

D = |¢) (¢|. Then we can see that Tr(D) = Tr(|¢) (¢]) = <¢\w§:;s follows:

TH(D) = éw D) 4 definition of Tr(D)
= @l el #D =16
= 3 (oll4) (ol ) # drop parens
_ n§:1<n|¢)<¢|n) # (alb) = (al b
= 5 (o) (ole) # rearrange

= (9| ( % |n) <n|> |v) # neither ¢ nor 1 depend on n
n=1

= (oI} # 3 ) (nl =1 (Bauation )
= (ol I) # {0/ T = (6] and I|y) = |v)
= (9l) # (0l) = (9] )

So the trace of the outer product [1) (¢|, Tr(|1) (¢]), is the inner product (¢|y).

A simple theorem relates the expectation value of an observable A in a state represented
by a density matrix p to the trace of A:

(4), = Tr(pA) (8)

The proof of Equation [§]is also pretty simple:



=

Tr(pA) = Te(p) (y[ A) #p=1¢) (Y]

I
M=

Py (n| ) (] Aln) # definition of Tr(-)
- i:t (nli) (6] A n) 4 (nl) = {n] [9)
=S W] Aln) () 4 rearrange

i
I

= (1] A( g: |n) (n|> |v) # neither A nor ¢ depend on n
n=1

= (A1) #é n) (n| =1 (Equation [3)
= (Y[Aly) #A-I=A
= (A) # (A), = (Y| Al¢) (Equation [5)

6 A More General View of the Density Operator

Consider an ensemble of identical quantum systems. The system has probability w; to be
in quantum state |1;). Here (¢;]1;) = 1, but the states [¢);) aren’t necessarily orthogonal
to one another. That means that out of all the examples in the ensemble, a fraction w; are
in state |t);), with w; > 0 and > w; = 1.

(2

The expectation value for the result of a measurement represented by a self-adjoint operator
Alis
(A)y =D wi (Wil Ali) (9)
i

We can write the expectation value in a different way using a basis |K) as

10
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6.1 Properties of the Density Operator

# defintion of <A>¢ ) Equationﬁ
#A=1-A-1

#;Iﬂ (] =I7§!K> (K| =1
# rearrange

# rearrange

# none of A, J, or K depend on i

4 rearrange
#p =2 wi i) (il
# 1)1 =

4T A=A

# Tr(D) = %: (n|D[n)

As mentioned above, there are several important properties of the density operator p. The
first of these is that Tr(p) = 1. This follows from w; has w; > 0 and »_ w; = 1.

i

Next, p is self-adjoint: pf = p. Because it is self-adjoint, p has eigenvectors |.J) with
eigenvalues Ay and the eigenvectors form a basis for vector space. Thus p has a standard
spectral representation

p=> M) (J
J

We can express A\j as Ay = (J|p|J). Then

Aro= (JlplJ) #
= I Swilen) wil)1)

5w, (1) (i])

S (1) (T

= Sl (i)

11

#p =D wilw;) (wi
# rearrange
# (Ji)" =
# (Tl (Ja)™ = [ (T i) |2

(il )



Since w; > 0 and | (J|1;) |2 > 0, each eigenvalue must be non-negative, that is, A\; > 0. In
addition, the trace of p is the sum of its eigenvalues, so > Ay = 1. Since each eigenvalue
J

is non-negative, Ay < 1.
Another way to see why | (a,|¥) |? = p(¥):

) = I¥) #1-X=X
= > lan) (an| |¥)) # > lan) (an| =1

n

= §|an> (anl)  # (an] [6) = (an]tt)

So (ay|t) is the amplitude of |a,), making | (a,|¥) |* = p(an).

7 Acknowledgements

12



References

[1] Frank Porter. Physics 125¢c Course Notes: Density Matrix Formalism. http:
//www.cithep.caltech.edu/~fcp/physics/quantumMechanics/densityMatrix/
densityMatrix.pdf, 2011. [Online; accessed 20-Dec-2018].

[2] F. Gieres. Mathematical surprises and Dirac’s formalism in quantum mechanics. Re-
ports on Progress in Physics, 63:1893-1931, December 2000.

[3] J. D. Cresser. Probability, expectation value and uncertainty. http://physics.mq.
edu.au/~jcresser/Phys301/Chapters/Chapter14.pdf, 2007. [Online; accessed 20-
Dec-2018].

[4] Wikipedia contributors. Kronecker delta — Wikipedia, the free encyclopedia. https://
en.wikipedia.org/w/index.php?title=Kronecker_delta&oldid=862709627, 2018.
[Online; accessed 11-December-2018].

13


http://www.cithep.caltech.edu/~fcp/physics/quantumMechanics/densityMatrix/densityMatrix.pdf
http://www.cithep.caltech.edu/~fcp/physics/quantumMechanics/densityMatrix/densityMatrix.pdf
http://www.cithep.caltech.edu/~fcp/physics/quantumMechanics/densityMatrix/densityMatrix.pdf
http://physics.mq.edu.au/~jcresser/Phys301/Chapters/Chapter14.pdf
http://physics.mq.edu.au/~jcresser/Phys301/Chapters/Chapter14.pdf
https://en.wikipedia.org/w/index.php?title=Kronecker_delta&oldid=862709627
https://en.wikipedia.org/w/index.php?title=Kronecker_delta&oldid=862709627

	Introduction
	Orthonormality, Completeness, and Projection
	Orthornomality
	Completeness
	Projection

	Expectation Values
	Shapes
	The Density  and the Trace of an Operator D
	A More General View of the Density Operator
	Properties of the Density Operator

	Acknowledgements

