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1 Vector Spaces

1.1 Definitions

Definition 1.1. A field is an algebraic structure1 consisting of a non-empty set K equipped with two binary
operations, + (addition) and · (multiplication), satisfying the conditions2:

(A) (K,+) is an Abelian group with identity element 0 (called zero).

(M) (K\{0}, ·) is an Abelian group with identity element 1.

(D) The distributive law a(b+ c) = ab+ ac holds for all a, b, c ∈ K.

Examples of important fields include

• Q, the field of rational numbers

• R, the field of real numbers

• C, the field of complex numbers

• Zp, the field of integers mod p for prime p

Definition 1.2. A vector space V over a field K is an algebraic structure consisting of a non-empty
set V equipped with a binary operation + (vector addition) and a scalar multiplication operation
(a, v) ∈ K× V 7→ av ∈ V such that the following rules hold:

(VA) (V,+) is an Abelian group with identity element 0 (the zero vector).

(VM) Rules for scalar multiplication:

(VM0) Closure: For any a ∈ K and v ∈ V there is a unique element av ∈ V .

(VM1) Distributivity1: For any a ∈ K and u, v ∈ V we have a(u+ v) = au+ av.

(VM2) Distributivity2: For any a, b ∈ K and v ∈ V we have (a+ b)v = av + bv.

(VM3) Associativity: For any a, b ∈ K and v ∈ V we have (ab)v = a(bv).

(VM4) Identity: For any v ∈ V we have 1v = v (where 1 is the identity element of K).

Since vector spaces have two kinds of elements, namely elements of K and elements of V , we distinguish
them by calling the elements of K scalars and the elements of V vectors.

A vector space over the field R is often called a real vector space while a vector space over C is called a
complex vector space.

1See Appendix A for a brief review of a few important algebraic structures.
2See Appendix B for more on groups and fields.
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1.2 Vectors

In this section we’ll define the vector notation that we will use in these notes as well as a few important
vector operations.

1.2.1 Notation

In these notes we will use boldface to represent a vector. Specifically, we will use a = (a1, a2, . . . , an) to
represent a column or row vector in some n-dimensional space (usually R or C). If a is a column vector then
in matrix format

a =


a1
a2
...
an


︸ ︷︷ ︸
n×1

Alternatively, if a is a row vector then in matrix format

a =
[
a1 a2 . . . an

]︸ ︷︷ ︸
1×n

The transpose of a vector a, aᵀ, is defined as follows: If a is a column vector then

aᵀ =
[
a1 a2 . . . an

]
Alternatively, if a is a row vector then

aᵀ =


a1
a2
...
an


Adding a ”hat” to a vector denotes the unit vector. That is, for a vector u, û is defined to be

û :=
u

‖u‖
(1)

where ‖u‖ is the Euclidean Norm of the vector u (Definition 1.4).

In words: û is a vector of unit length in the u direction.

Similarly, î, ĵ, and k̂ are unit vectors in R3 in the x, y, and z directions respectively. Note that î, ĵ, and k̂
are the canonical basis vectors for R3 [4] and have column vector format

î =

1
0
0

, ĵ =

0
1
0

, k̂ =

0
0
1


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I have also seen ei used to represent the ith basis vector in Rn. So ei is a vector with a one in the ith position
and a zero in each of the other n− 1 positions. In R3 this means that e1 = î, e2 = ĵ, and e3 = k̂.

In general, the standard basis (which is sometimes called the computational basis) for the n-dimensional
Euclidean space consists of the ordered set of n distinct vectors

{ei : 1 ≤ i ≤ n}

where ei is the ith basis vector, that is, it has a one in the ith coordinate (position) and zeros everywhere
else3. The ei have column vector format

e1 =


1
0
...
0
0

, e2 =


0
1
...
0
0

, . . . , en−1 =


0
0
...
1
0

, en =


0
0
...
0
1


Using these definitions we can define the parametric form of some curve C in R3, r(t), as follows:

r(t) = g(t)̂i + h(t)̂j + k(t)k̂

where t ∈ [a, b] and g(t), h(t), and k(t) are scalar functions4.

Another common notation for vectors is ~r(t), where ~r(t) might be defined as follows:

~r(t) = g(t)̂i+ h(t)ĵ + k(t)k̂

1.2.2 A Few Vector Operations

Definition 1.3. Inner Product: 〈a,b〉

The inner product (aka dot product or scalar product) of two n-dimensional vectors a = (a1, a2, . . . , an) and
b = (b1, b2, . . . , bn), usually denoted by either 〈a,b〉 or a · b, is defined to be the scalar value

〈a,b〉 :=

n∑
j=1

ajbj (2)

Since aj and bj are scalars (and scalar multiplication commutes) the inner product commutes:

〈a,b〉 =

n∑
j=1

ajbj =

n∑
j=1

bjaj = 〈b,a〉 (3)

It is worth noting that there are some cases in which the dot notation is used but the operation does not
commute. For example, the divergence of A, is defined to be div A = ∇ ·A [8]. Here the operation denoted
by · is ”reminiscent” of the inner product (as defined in Equation (2)) but does not commute. That is

3This is called a ”one-hot” encoding in machine learning, where the i’s might be the classes in a classification problem.
4A scalar function is a function f such that f : Rn → R.
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∇ ·A 6= A · ∇ (4)

One way to see this is to notice that the LHS of Equation (4) is a scalar function while the RHS is a
differential operator.

If a and b are column vectors then their inner product 〈a,b〉 can also be written as the matrix product aᵀb.
Similarly, if a and b are row vectors then their inner product can be written as the matrix product abᵀ.
For example, the inner product of two n × 1 column vectors a and b is equivalent to the following matrix
multiplication:

〈a,b〉 = aᵀb =
[
a1 a2 . . . an

]

b1
b2
...
bn

 =

n∑
j=1

ajbj

According to the Pythagorean theorem, the length of a vector a = (a1, a2, a3) ∈ R3, denoted ‖a‖, equals√
a21 + a22 + a23. The next definition is a generalization of the notion of length to vectors in Rn.

Definition 1.4. Euclidean Norm: ‖x‖

The Euclidean norm of a vector x = (x1, x2, . . . , xn) ∈ Rn is defined to be

‖x‖ :=
√
〈x,x〉 =

√√√√ n∑
j=1

x2j (5)

Definition 1.5. p-Norm: ‖x‖p

The p-norm of a vector x = (x1, x2. . . . , xn) is defined to be

‖x‖p :=

 n∑
i=1

|xi|p
1/p

for p ≥ 1 and p ∈ R.

For p = 1, we get the taxicab norm, for p = 2 we get the Euclidean norm, and as p approaches∞ the p-norm

approaches the infinity norm or maximum norm: ‖x‖∞ := max
i
|xi|.

The inner product also has an interesting geometric interpretation:

Theorem 1.1. 〈x,y〉 =‖x‖‖y‖ cos θ

Proof. Assume that x and y are two linearly independent vectors in R3 and that M is the plane generated

by them. Then x and y also generate a triangle in M with sides of length‖x‖,‖y‖, and‖x− y‖. This setup

is shown in Figure 1.
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x

x− y

M

O θ

〈x,y〉 =‖x‖‖y‖ cos θ ⇒ θ = arccos

(
〈x,y〉
‖x‖‖y‖

)

Figure 1: Setup for the geometric interpretation of 〈x,y〉

If θ ∈ {0, π} is the angle between x and y in M then by the Law of Cosines [10] we have

‖x− y‖2 =‖x‖2 + ‖y‖2 − 2‖x‖‖y‖ cos θ (6)

We can also notice that

‖x− y‖2 =
n∑
j=1

(xj − yj)2 #‖x‖2 =
n∑
j=1

x2j (Equation (5))

=
n∑
j=1

(
x2i − 2xjyj + y2j

)
# (xj − yj)2 = x2i − 2xjyj + y2j

=
n∑
j=1

x2j − 2
n∑
j=1

xjyj +
n∑
j=1

yj # sum is a linear operator [12]

= ‖x‖2 − 2〈x,y〉+ ‖y‖2 #‖x‖2 =
n∑
j=1

x2j and 〈x,y〉 =
n∑
j=1

xjyj (Equations (5) and (2))

= ‖x‖2 + ‖y‖2 − 2〈x,y〉 # rearrange: ‖x− y‖2 =‖x‖2 + ‖y‖2 − 2〈x,y〉

Setting the right-and side (RHS) of this last expression for‖x− y‖2 equal to the RHS of Equation (6) yields

‖x‖2 + ‖y‖2 − 2〈x,y〉 =‖x‖2 + ‖y‖2 − 2‖x‖‖y‖ cos θ

Subtracting ‖x‖2 + ‖y‖2 from both sides of this equation and then dividing by −2 gives us

〈x,y〉 =‖x‖‖y‖ cos θ
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Definition 1.6. Orthogonal Vectors: 〈x,y〉 = 0

We say that x,y ∈ Rn are orthogonal if 〈x,y〉 = 0, since

〈x,y〉 = ‖x‖‖y‖ cos θ # Theorem 1.1

⇒ 〈x,y〉 =‖x‖‖y‖ cos π2 # x ⊥ y⇒ θ = π
2

⇒ 〈x,y〉 =‖x‖‖y‖ 0 # cos π2 = 0

⇒ 〈x,y〉 = 0 #‖x‖‖y‖ 0 = 0

Definition 1.7. Orthogonal Projection

Given two linearly independent vectors a,b ∈ Rn, we want to find the orthogonal projection of a onto the line
generated by b. To analyze this, denote by M the plane generated by a and b and consider an orthonormal
basis {v1,v2} of M consisting of v1 = b

‖b‖ (v1 = b̂) and a unit vector v2 ∈ M that is orthogonal to v1.

This is depicted in Figure 2.

Figure 2: Orthogonal Projection

Since {v1,v2} is a basis of M there exist scalars α and β such that

a = αv1 + βv2 (7)

Here we want to solve for α. One way to do that is to take the inner product of b and a (Equation (7)):
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〈a,b〉 = 〈b,a〉 # since 〈a,b〉 =
n∑
j=1

ajbj =
n∑
j=1

bjaj = 〈b,a〉 (Equation (3))

= 〈b, (αv1 + βv2)〉 # since a = αv1 + βv2 (Equation (7))

= 〈b, αv1〉+ 〈b, βv2〉 # the inner product is distributive over vector addition [15]

= α〈b,v1〉+ β〈b,v2〉 # by the scalar product rule: 〈c1v1, c2v2〉 = c1c2〈v1,v2〉 [15]

= α〈v1,b〉+ β〈b,v2〉 # since 〈b,v1〉 = 〈v1,b〉 (Equation (3))

= α〈v1,b〉+ β 0 # since 〈v1,v2〉 = 0 and v1 = b̂⇒ 〈b̂,v2〉 = 1
‖b‖ 〈b,v2〉 = 0⇒ 〈b,v2〉 = 0

= α〈v1,v1‖b‖〉 # since β 0 = 0 and v1 = b
‖b‖ so b = v1‖b‖

= α‖b‖ 〈v1,v1〉 # by the scalar product rule

= α‖b‖ # since v1 = b
‖b‖ ⇒‖v1‖ = 1 and so 〈v1,v1〉 =‖v1‖2 = 12 = 1

So we see that

〈a,b〉 = α‖b‖

and so

α =
〈a,b〉
‖b‖

=

〈
a,

b

‖b‖

〉
= 〈a, b̂〉

α represents the component of the vector a that is parallel to (”in the direction of”) the vector b̂. More
generally, since b̂ is the unit vector in the b direction, 〈a,b〉 is also the component of a in the b direction.

Definition 1.8. Cross Product: a× b

The cross product is a binary operation on two vectors in a three-dimensional oriented Euclidean vector
space [5]. Specifically, given two linearly independent vectors a and b, the cross product of a and b, denoted
a× b, is defined to be a vector with the following three properties:

• a× b is perpendicular to both a and b (Figure 3).

• a× b has direction given by the right-hand rule (Figure 4).

• a× b has magnitude equal to the area of the parallelogram spanned by a and b (Figure 3).
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Figure 3: The parallelogram formed by a× b [14]

One definition of the cross product is

a× b =‖a‖‖b‖ sin(θ) n (8)

where

• θ is the angle between a and b in the plane containing them, so 0 ≤ θ ≤ π.

• ‖a‖ and ‖b‖ are the magnitudes of the vectors a and b (aka their norms; see Definition 1.4)).

• n is a unit vector normal to the plane containing a and b in the direction given by the right-hand rule.

Figure 4: The right-hand rule for vectors a and b [17]

If the cross product of two vectors is the zero vector (that is, a× b = 0), then either one or both of the
inputs is the zero vector (a = 0 and/or b = 0) or the vectors are parallel or anti-parallel (θ ∈ {0, π}). In the
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second case (θ ∈ {0, π}), since the angle between a vector and itself is zero, Equation (8) tells us that the
cross product of a vector with itself is the zero vector: a× a =‖a‖‖a‖ sin(0) n =‖a‖‖a‖ 0 n = 0.

Note that by the right-hand rule, if the thumb points at you then the fingers curl in the anti-clockwise
(counter-clockwise) direction. That is, when viewed from the top or z axis the system rotates in an anti-
clockwise direction. This is one of the reasons we take the direction of a curve to be in the anti-clockwise
direction when we consider, for example, line integrals in Section 6.

The cross product can also be expressed as the following determinant

a× b = det

 î ĵ k̂
a1 a2 a3
b1 b2 b3


which can be computed using Sarrus’s rule [13] or cofactor expansion [3]. Using Sarrus’s rule the cross
product expands to

a× b = (a2b3̂i + a3b1̂j + a1b2k̂)− (a3b2̂i + a1b3̂j + a2b1k̂)

= (a2b3 − a3b2)̂i + (a3b1 − a1b3)̂j + (a1b2 − a2b1)k̂

Using cofactor expansion the 3× 3 determinant can be expressed in terms of 2× 2 determinants:

a× b =

∣∣∣∣a2 a3
b2 b3

∣∣∣∣î− ∣∣∣∣a1 a3
b1 b3

∣∣∣∣ĵ +

∣∣∣∣a1 a2
b1 b2

∣∣∣∣k̂
= (a2b3 − a3b2)̂i− (a1b3 − a3b1)̂j + (a1b2 − a2b1)k̂

The cross product has the following additional properties [14]:

• It is anti-commutative: a× b = −(b× a)

• It is distributive over addition: a× (b + c) = (a× b) + (a× c)

• It is compatible with scalar multiplication so that: (ca)× b = a× (cb) = c (a× b)

• It is not associative but satisfies the Jacobi identity [16]: a× (b× c) + b× (c× a) + c× (a× b) = 0

2 A Few Theorems

Theorem 2.1. Cauchy–Schwarz Inequality:
∣∣〈a,b〉∣∣ ≤‖a‖‖b‖

Proof. The inequality is trivial if either a or b is zero, so assume that neither is. So without loss of generality

(I think) let x =
a

‖a‖
and y =

b

‖b‖
and so ‖x‖ =‖y‖ = 1 (x = â and y = b̂). Then
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0 ≤ ‖x− y‖ #‖x− y‖ ≥ 0 for all x,y ∈ Rn (Equation (5))

≤ ‖x− y‖2 #‖x− y‖ ≥ 0⇒‖x− y‖2 ≥ 0

≤
n∑
j=1

(xj − yj)2 #‖x− y‖2 =

n∑
j=1

(xj − yj)2 (Equation (5))

≤
n∑
j=1

(
x2j − 2xjyj + y2j

)
# expand previous line

≤
n∑
j=1

x2j − 2

n∑
j=1

xjyj +
n∑
j=1

y2j # sum is a linear operator

≤ ‖x‖2 − 2〈x,y〉+ ‖y‖2 #‖x‖2 =
n∑
j=1

x2j and 〈x,y〉 =
n∑
j=1

xjyj (Equations (5) and (2) respectively)

≤ 1− 2〈x,y〉+ 1 #‖x‖ =‖y‖ = 1⇒‖x‖2 =‖y‖2 = 1

≤ 2− 2〈x,y〉 # 1 + 1 = 2

⇒ −2 ≤ −2〈x,y〉 # subtract 2 from both sides

⇒ 1 ≥ 〈x,y〉 # divide by -2, reversing inequality

⇒ 〈x,y〉 ≤ 1 # rearrange

⇒
〈

a

‖a‖
,

b

‖b‖

〉
≤ 1 # x =

a

‖a‖
, y =

b

‖b‖
by the definition above

⇒ 〈a,b〉
‖a‖‖b‖

≤ 1 # scalar multiplication rule: 〈c1v1, c2v2〉 = c1c2〈v1,v2〉

⇒ 〈a,b〉 ≤‖a‖‖b‖ # multiply both sides by ‖a‖‖b‖

If we replace a by −a we see by Equation (5) that ‖−a‖ = ‖a‖. Further, by the scalar multiplication rule
for inner products with c1 = −1 and c2 = 1 we have 〈−a,b〉 = −〈a,b〉. Taken together these results imply
that −〈a,b〉 ≤‖a‖‖b‖.

Next note that the absolute value of x, |x|, is defined to be

|x| =

{
x, if x ≥ 0

−x, if x < 0.
(9)

So one way to see the Cauchy–Schwarz inequality is by setting x equal to 〈a,b〉 in Equation (9). Then when

〈a,b〉 ≥ 0 we have
∣∣〈a,b〉∣∣ = 〈a,b〉 and we showed above that 〈a,b〉 ≤‖a‖‖b‖. Similarily, when 〈a,b〉 < 0

we have
∣∣〈a,b〉∣∣ = −〈a,b〉 and we showed that −〈a,b〉 ≤ ‖a‖‖b‖. Together these give

∣∣〈a,b〉∣∣ ≤ ‖a‖‖b‖.
Said another way:

[(
−〈a,b〉 ≤ ‖a‖‖b‖

)
∧
(
〈a,b〉 ≤ ‖a‖‖b‖

)]
⇒
∣∣〈a,b〉∣∣ ≤‖a‖‖b‖. �

3 Derivatives

We will also denote the derivative of a vector r with respect to t by ṙ,
dr

dt
or r′(t). Note also that by definition

dr

dt
:= lim

∆t→0

r(t+∆t)− r(t)

∆t
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4 The Jacobian

It is common to change the variable(s) of integration with the main goal being to rewrite a complicated
integrand into a some simpler but equivalent form. However, in doing so, the underlying geometry of the
problem may be altered. This was seen often in single-variable integrals:

Example 4.1. Evaluate ∫ 4

2

(3x+ 1)3dx (10)

Solution: We can rewrite the integral in Equation (10) by letting u = 3x + 1 so that du = 3 dx. Notice
that the expression du = 3 dx ⇒ dx = 1

3 du and so the bounds of integration in the xy-plane, namely
2 ≤ x ≤ 4 are transformed using u = 3x + 1. So if x = 2 then u = 3(2) + 1 = 7 and when x = 4 we have
u = 3(4) + 1 = 13. So the bounds of integration with respect to u are 7 ≤ u ≤ 13. Using this substitution
we see that

∫ 4

2

(3x+ 1)3dx =

∫ 13

7

u3
(

1

3
du

)
=

1

3

∫ 13

7

u3 du

Note that integrals

∫ 4

2

(3x+ 1)3dx and
1

3

∫ 13

7

u3 du represent the same problem. Specifically

∫ 4

2

(3x+ 1)3dx =

(
1

4

)(
1

3

)(
(3x+ 1)4

) ∣∣∣∣∣
4

2

=

(
1

4

)(
1

3

)(
134 − 74

)
=

(
1

12

)
26160 = 2180

and

1

3

∫ 13

7

u3 du =

(
1

4

)(
1

3

)(
u4
) ∣∣∣∣∣

13

7

=

(
1

4

)(
1

3

)(
134 − 74

)
=

(
1

12

)
26160 = 2180

The 1
3 that we see in the expression for dx, namely dx = 1

3 du is called the (one dimensional) Jacobian.

Note also that the integral in variable x is over an interval of length 2 units, while the integral in u is over
an interval of length 6 units. In a very rough sense then the variable u covers its interval of integration three
times “as fast” as x. In particular, since u and x are linearly related the leading 1

3 adjusts for the change in
the underlying geometry of the intervals.

For double integrals in R2 we assume that a region of integration defined in terms of variables x and y and
are substituted for new variables u and v through two functions:

u = f1(x, y)

v = f2(x, y)

Note that the pair of equations are written so that u and v are written in terms of x and y. This is called a
transformation. Such a “change of variables” should also be reversible. That is, we should be able to solve
for x and y in terms of u and v:

x = g1(u, v)

y = g2(u, v)
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Figure 5: Transforming the rθ-plane into the xy-plane

In this case the Jacobian, J(u, v), is defined to be the determinant of a 2× 2 matrix as follows:

J(u, v) = det


∂g1
∂u

∂g1
∂v

∂g2
∂u

∂g2
∂v

 = det


∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v


In three dimensions the Jacobian is

J(u, v, w) = det



∂u

∂x

∂u

∂y

∂u

∂z
∂v

∂x

∂v

∂y

∂v

∂z
∂w

∂x

∂w

∂y

∂w

∂z


In general suppose f : Rn → Rm is a function such that each of its first-order partial derivatives exist on
Rn This function takes a point x ∈ Rn as input and produces the vector f(x) ∈ Rm as output. Then the
Jacobian matrix of f is defined to be an m× n matrix J whose (i, j)th entry is

Jij =
∂fi
∂xj

More explicitly

J = det

[
∂f

∂x1
· · · ∂f

∂xn

]
= det


∇Tf1

...
∇Tfm

 = det


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn


where ∇Tfi is the transpose (row vector) of the gradient of the ith component.

I have also seen the Jacobian matrix, whose entries are functions of x = [x1, x2, . . . , xn], denoted in various

other ways including ∇f and
∂(f1, .., fm)

∂(x1, .., xn)
.
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Example 4.2. Find the Jacobian for the transformation shown in Figure 5.

Solution: Here we have

J(r, θ) = det


∂x

∂r

∂x

∂θ
∂y

∂r

∂y

∂θ

 # definition of the Jacobian

= det

[
cos θ −r sin θ
sin θ r cos θ

]
# x = r cos θ, y = r sin θ

= cos(θ)r cos(θ)− (−r sin(θ)) sin(θ) # det

[
a b
c d

]
= ad− bc

= r cos2 θ + r sin2 θ # simplify

= r(cos2 θ + sin2 θ) # factor out r

= r # cos2 θ + sin2 θ = 1

J(r, θ) = r is the common Jacobian when rectangular coordinates x and y are rewritten in polar coordinates
r and θ.

For the next example we need the definition of Type I and Type II regions.

Definition 4.1. Type I and Type II Regions

A region D in the xy-plane is of Type I if it lies between two vertical lines and the graphs of two continuous
functions g1(x) and g2(x). That is: D = {(x, y) | a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)}.

Type I regions are shown in Figure 6.

Figure 6: Type I Regions

Alternatively, a region D in the xy-plane is of Type II if it lies between two horizontal lines and the graphs
of two continuous functions h1(y) and h2(y). That is

D = {(x, y) | c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y)}

13



Type II regions are shown in Figure 7.

Figure 7: Type II Regions

Example 4.3. Evaluate

∫∫
R

(x− 2y) dA, where R is a parallelogram in the xy-plane with vertices (0,0),

(4,1), (6,4) and (2,3). This parallelogram is shown in Figure 8.

x

y

R

(0, 0)

(2, 3)

(6, 4)

(4, 1)

Figure 8: Parallelogram in the xy-plane

Solution: A sketch of this region (Figure 8) shows that it is a Type II region and would require three
separate double integrals in either the dy, dx or dxdy orderings of integration. Instead, note that the region
consists of two pairs of parallel sides and so we can find the equation for each side:

• For the region from (0, 0) to (4, 1) we have y = 1
4x or −x+ 4y = 0

• For the region from (2, 3) to (6, 4) we have y = 1
4x+ 5

2 or −x+ 4y = 10

• For the region from (0, 0) to (2, 3) we have y = 3
2x or − 3

2x or −3x+ 2y = 0

• For the region from (4, 1) to (6, 4) we have y = 3
2x− 5 or −3x+ 2y = −10

This is shown in Figure 9.
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x

y

R

(0, 0)

(2, 3)

(6, 4)

(4, 1)

−3x + 2y = 0

−x + 4y = 10

−3x + 2y = −10

−x + 4y = 0

Figure 9: Equations of the sides of the parallelogram shown in Figure 8

Now we can define a transformation from x and y into the new variables u and v by the following equations:

u = −x+ 4y # so that 0 ≤ u ≤ 10

v = −3x+ 2y # so that −10 ≤ v ≤ 0

This transformation transforms the region of integration R in the xy-plane (a parallelogram, Figure 8) into
a square in the uv-plane and so u and v have constant bounds. This square is shown Figure 10. The double-
integral (whether written in xy-space or uv-space) should be negative because the integrand is ”more often”
negative over R and its transform into the uv-space.

(0, 0)

(0,−10) (10,−10)

(10, 0) u

v

0 ≤ u ≤ 10
−10 ≤ v ≤ 0

Figure 10: The parallelogram R (Figure 8) is a square in the uv-plane

Now we need to solve for x and y. We have expressions for u and v and so can solve for x and y:

15



u = −x+ 4y
v = −3x+ 2y

First multiply the bottom row by -2:

u = −x+ 4y
−2v = −2(−3x+ 2y)

Simplifying we get

u = −x+ 4y
−2v = 6x− 4y

(11)

Adding these two equations we get u− 2v = 5x and so solving for x we get

x =
1

5
u− 2

5
v (12)

Substituting this back into the equation for u in Equations (11) and solving for y we get

y =
3

10
u− 1

10
v (13)

We can now find the Jacobian:

J(u, v) = det


∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

 # definition of the Jacobian

= det


1

5
−2

5
3

10
− 1

10

 # x = 1
5u−

2
5v and y = 3

10u−
1
10v

=

[(
1

5

)(
− 1

10

)]
−

[(
−2

5

)(
3

10

)]
# det

[
a b
c d

]
= ad− bc

= − 1

50
+

6

50
# simplify

=
5

50
# simplify

=
1

10
# J(u, v) =

1

10

So we see that the Jacobian in this case is

J(u, v) =
1

10
(14)

16



Substituting Equations (12) and (13) into the original integral and noting that dA = J(u, v) du dv we get

∫∫
R

(x− 2y) dA =

0∫
−10

10∫
0

((
1

5
u− 2

5
v

)
− 2

(
3

10
u− 1

10
v

))(
1

10

)
du dv # Equations (12) & (13) and dA =

(
1
10

)
du dv

=
1

10

0∫
−10

10∫
0

(
−2

5
u− 1

5
v

)
du dv # simplify, moving the Jacobian to the front

=
1

10

0∫
−10

(−20− 2v) dv #

10∫
0

(
−2

5
u− 1

5
v

)
du =

[
−1

5
u2 − 1

5
uv

] ∣∣∣∣∣
10

0

=
1

10

[
− 20v − v2

]∣∣∣∣0
−10

# evaluate integral + FToC

= 0− 1

10

[
− 20(−10)− (−10)2

]
# evaluate at limits

=

(
− 1

10

)
(100) #

(
− 1

10

)(
200− 100

)
= − 1

10
(100)

= −10 # the region is completely below the u axis

⇒

∣∣∣∣∣
∫∫
R

(x− 2y) dA

∣∣∣∣∣ = 10 # the volume is 10 units3

This was an example of a linear transformation, in which the equations transforming x and y into u and v
were linear (so were the equations reversing the transformation). When this is the case the Jacobian will be
a constant like we saw here.

We can also see how the geometry changed: The original region in the xy-plane has an area of 10 units2

while the region in the uv-plane has an area of 100 units2. That is, the region in the uv-plane is 10 times as

large as the region in the xy-plane. The Jacobian
(

1
10

)
scales this change in the underlying area.

Remark 4.1. Note that the Jacobian is usually taken to be a positive quantity. This is because the naming
(and ordering) of the functions transforming x and y into u and v (and the reverse) is arbitrary. Since the
Jacobian is a determinant, it is possible that two rows may be swapped depending on the original naming
of the functions, which may introduce a factor of −1 into the result, which can be ignored.

5 Arc Length

Consider a segment of the parametric curve r(t) = g(t) î + h(t) ĵ + k(t) k̂ between two points P = r(t) and
Q = r(t+∆t), as shown in Figure 11.

A question we might ask is: what is the length of the segment of the curve between P and Q? This length
is called the arc length and is denoted by ∆s and can be approximated by the chord length ‖∆r‖.
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Figure 11: ∆r = r(t+∆t)− r(t)

Specifically we can see from Figure 11 that

‖∆r‖ = ‖r(t+∆t)− r(t)‖

and so

∆s ≈ ‖r(t+∆t)− r(t)‖

Now we can compute the infinitesimal arc length ds, as shown in Figure 12:

x

y

f(x)

O

ds

x1 x2

dx

dyds

ds2 = dx2 + dy2

θ

Figure 12: f(x), ds and the Pythagorean Theorem
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∆s ≈ ‖∆r‖ # approximate ∆s by ‖∆r‖

= ‖r(t+∆t)− r(t)‖ # ∆r = r(t+∆t)− r(t)

= ‖r(t+∆t)− r(t)‖ · ∆t
∆t

# multiply by 1 =
∆t

∆t

=

∥∥∥∥r(t+∆t)− r(t)

∆t

∥∥∥∥ ·∆t # assume ∆t > 0

⇒ ∆s ≈
∥∥∥∥r(t+∆t)− r(t)

∆t

∥∥∥∥ ·∆t # combine expressions for ∆s

⇒ lim
∆t→0

∆s = lim
∆t→0

[∥∥∥∥r(t+∆t)− r(t)

∆t

∥∥∥∥ ·∆t
]

# take the limit of both sides

⇒ ds = lim
∆t→0

[∥∥∥∥r(t+∆t)− r(t)

∆t

∥∥∥∥ ·∆t
]

# ∆t→ 0⇒ ∆s→ 0⇒ lim
∆t→0

∆s = ds

⇒ ds = lim
∆t→0

∥∥∥∥r(t+∆t)− r(t)

∆t

∥∥∥∥ · lim
∆t→0

∆t # product rule for limits [1]

⇒ ds =

∥∥∥∥ lim
∆t→0

r(t+∆t)− r(t)

∆t

∥∥∥∥ · lim
∆t→0

∆t # for a normed vector space X lim ‖xn‖ = ‖ limxn‖

⇒ ds =

∥∥∥∥drdt
∥∥∥∥ · dt # lim

∆t→0

r(t+∆t)− r(t)

∆t
=
dr

dt
, lim
∆t→0

∆t = dt

Interestingly we can also see this using the Pythagorean theorem. Specifically, if we move an infinitesimal
distance in the x and y directions we get a triangle in the xy-plane who’s sides have length dx and dy and
who’s hypotenuse is ds. This scenario is shown for some curve f(x) in Figure 12. In the two dimensional

case where the parameterization is x = g(t) and y = h(t) we define r(t) = g(t) î + h(t) ĵ so that

dr

dt
=
dg

dt
î +

dh

dt
ĵ (15)

The Pythagorean theorem tells us that ds =
√
dx2 + dy2. Using this expression for ds we can see that
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ds =
√
dx2 + dy2 # Figure 12

=
√
dg2 + dh2 # switch to parametric form: x = g(t) and y = h(t)

=
√
dg2 + dh2 · dt

dt
# multiply by 1 =

dt

dt
, dt > 0

=
√
dg2 + dh2 ·

[√
1

dt2
· dt

]
#
dt

dt
=

√(
dt

dt

)2

=

√
dt2

dt2
=

√
1

dt2
· dt2 =

√
1

dt2
· dt =

[√
1

dt2
· dt

]

=

√(
dg2 + dh2

)
·
(

1

dt2

)
· dt # simplify

=

√(
dg

dt

)2

+

(
dh

dt

)2

· dt # simplify

=

∥∥∥∥drdt
∥∥∥∥ · dt # Equation (15) and the definition of ‖·‖

Now we can see that

ds

dt
=

∥∥∥∥drdt
∥∥∥∥

and so

ds

dt
=‖ṙ‖ (16)

5.1 The Unit Tangent Vector T

Since
ds

dt
=

∥∥∥∥drdt
∥∥∥∥ =‖ṙ‖ we also know that the unit tangent vector T =

ṙ

‖ṙ‖
=
dr

ds
[7]. Why? Consider

T =
ṙ

‖ṙ‖
# T is the unit vector in the ṙ direction (Equation (1))

=

(
dr

dt

)
‖ṙ‖

# ṙ =
dr

dt
(definition of ṙ)

=

(
dr

dt

)
(
ds

dt

) #‖ṙ‖ =
ds

dt
(Equation (16))

=
dr

ds
# simplify
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6 The Line Integral

Consider the definite integral shown in Figure 13. Here we want to find the area S that is above the line
segment [a, b] and below the curve f(x).

Figure 13: The Definite Integral: The area S =

∫ b

a

f(x) dx

The line integral, denoted

∫
C

f(x, y) ds, is similar except that here we want to find the area above the curve

C and below the function f(x, y) (so the line integral is by definition in three dimensions). The comparison

between the definite integral

∫ b

a

f(x) dx and the line integral

∫
C

f(x, y) ds is shown in Figure 14.

Figure 14: Definite vs. Line Integrals

6.0.1 Parameterizing the Curve C

One of the first steps in solving a line integral is to find a parameterization for the curve C. We would like
to find a parameterization such that the integral reduces to an integral over a single variable, call it t. Then
the parametric form of x is called g(t) (or sometimes x(t)), the parametric form of y is called h(t) (or y(t)),
and the parameter t ∈ [a, b]. That is ∫

C

f(x, y) ds =

∫ b

a

f(g(t), h(t)) ds

All good, but what is ds? We saw in Section 5 that ds is the infinitesimal arc length and that by the

Pythagorean theorem ds =
√
dx2 + dy2 (Figure 12). Using this expression for ds we can see that
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ds =
√
dx2 + dy2 # by the Pythagorean theorem

=
√
dg2 + dh2 # switch to parametric form: x = g(t) and y = h(t)

=
√
dg2 + dh2

dt

dt
# multiply by 1 =

dt

dt
, dt > 0

=

√(
dg

dt

)2

+

(
dh

dt

)2

dt # simplify

=
√
g′(t)2 + h′(t)2 dt # switch notation from Leibniz → Lagrange:

df

dt
= f ′(t)

Now we can write the line integral in terms of a single variable t ∈ [a, b] as follows:

∫
C

f(x, y) ds =

∫ b

a

f(g(t), h(t))
√
g′(t)2 + h′(t)2 dt

For example, suppose C is a circle of radius r where we want to integrate over the part of the circle in the

first quadrant. That is, C is x2 + y2 = r2. In this case the parameterization is x(t) = g(t) = r cos(t) and

y(t) = h(t) = r sin(t). Solving for
√
g′(t)2 + h′(t)2 we get

√
g′(t)2 + h′(t)2 =

√
(−r sin(t))2 + (r cos(t))2 # g′(t) = −r sin(t) and h′(t) = r cos(t)

=
√
r2 sin2(t) + r2 cos2(t) # squares

=
√
r2(sin2(t) + cos2(t)) # factor out r2

= r
√

sin2(t) + cos2(t) #
√
r2 = r

= r
√

1 # sin2(t) + cos2(t) = 1

= r #
√

1 = 1

So in this example ds = r dt.

Next we need to specify the limits of integration for the parameterization. Since the curve C is a circle in
the first quadrant the parameter t ∈ [0, π2 ] and so the limits of integration are a = 0 and b = π

2 . Putting this
all together we get

∫ π
2

0

f(r cos(t), r sin(t)) r dt = r

∫ π
2

0

f(r cos(t), r sin(t)) dt

for some function f .
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6.1 Vector Fields

In vector calculus and physics, a vector field is an assignment of a vector to each point in a subset of some
space [6]. For example, a vector field in the plane can be visualized as a collection of arrows with a given
magnitude and direction, each attached to a point in the plane. Vector fields are often used to model the
speed anddirection of a moving fluid throughout space, or the strength and direction of some force, such as
the magnetic or gravitational force, as it changes from one point to another point.

For example, the wind velocity vector field for the 2011 Joplin, MO tornado [11] is shown in Figure 15. Here
the color represents the wind speed ‖v‖, where v is the wind velocity vector.

Figure 15: 2011 Joplin, MO Tornado Wind Velocity Vector Field

The general form of a vector field (here in three dimensions) is

#»

F (x, y, z) = P (x, y, z) î+Q(x, y, z) ĵ +R(x, y, z) k̂

where P , Q, and R are scalar functions.

23



6.2 Line Integrals of Vector Fields

6.3 Fundamental Theorem for Line Integrals

6.4 Conservative Vector Fields

6.5 Green’s Theorem

6.6 Stoke’s Theorem

7 Surface Integrals

8 Conclusions
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Appendix A

A Brief Review of Algebraic Structures

Structure ABO1 Identity Inverse Distributive2 Commutative3
Comments

Semigroup X no no N/A no (S, ◦)
Monoid X X no N/A no Semigroup plus identity ∈ S
Group X X X N/A no Monoid plus inverse ∈ S
Abelian Group X X X N/A X(◦) Commutative group
Ring+ X X X X X(+) Abelian group under +
Ring∗ X yes/no no X no Monoid under ∗
Field(+,∗) X X(+, ∗) X(+, ∗) X X(+, ∗) Abelian group under + and ∗
Vector Space X X(+, ∗) X(+) X X(+) Abelian group under +, scalars ∈ Field
Module X X(+, ∗) X(+) X X(+) Abelian group under +, scalars ∈ Ring

Table 1: A Few Algebraic Structures and Their Features

Abbreviations

1. ABO: Associative Binary Operation

• (x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ S
• x ◦ y ∈ S for all x, y ∈ S (S is closed under ◦)

2. Distributive: Distributive Property

• Left Distributive Property: x ∗ (y + z) = (x ∗ y) + (x ∗ z) for all x, y, z ∈ S
• Right Distributive Property: (y + z) ∗ x = (y ∗ x) + (z ∗ x) for all x, y, z ∈ S
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• ∗ is distributive over + if ∗ is left and right distributive

3. Commutative: Commutative Property

• x ◦ y = y ◦ x for all x, y ∈ S

Notes

• Table 1 implies that F ⊂ R ⊂ G ⊂ M ⊂ SG.

• Whether or not a ring has a multiplicative identity seems to depend on the field of study.

In general the definition of a ring R doesn’t require a multiplicative inverse in R (a−1 /∈ R for all a ∈ R)
or that multiplication be commutative in R. Specifically: R is an Abelian group under + but we don’t
require that multiplication be commutative (while a+ b = b+ a for all a, b ∈ R, we don’t require that
ab = ba for all a, b ∈ R). These are perhaps the main ways in which a ring differs from a field. In
addition, as mentioned above in some cases R need not include a multiplicative identity (1 /∈ R).

• F ⊂ VS since the field axioms require a multiplicative inverse (a−1) while vector spaces do not. Fields
are also commutative under ∗ and vector spaces are not.

• VS ⊂ Module since the scalars in a module come from a ring as opposed to a field like we find in vector
spaces and F ⊂ R [2].

Appendix B

Fields and Vector Spaces

Fields

A field is an algebraic structure K in which we can add and multiply elements such that the following laws
hold:

Addition Laws

(FA0) Closure: For any a, b ∈ K there is a unique element a+ b ∈ K.

(FA1) Associativity: For all a, b, c ∈ K we have a+ (b+ c) = (a+ b) + c.

(FA2) Identity: There is an element 0 ∈ K such that a+ 0 = 0 + a = a for all a ∈ K.

(FA3) Inverse: For any a ∈ K there exists −a ∈ K such that a+ (−a) = (−a) + a = 0.

(FA4) Commutativity: For any a, b ∈ K we have a+ b = b+ a.

Multiplication laws

(FM0) Closure: For any a, b ∈ K, there is a unique element ab ∈ K.

(FM1) Associativity: For all a, b, c ∈ K we have a(bc) = (ab)c.

(FM2) Identity: There is an element 1 ∈ K, 1 6= 0, such that a1 = 1a = a for all a ∈ K.

(FM3) Inverse: For any a ∈ K with a 6= 0, there exists a−1 ∈ K such that aa−1 = a−1a = 1.

(FM4) Commutativity: For any a, b ∈ K we have ab = ba.

Distributive law
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(D) Distributivity: For all a, b, c ∈ K, we have a(b+ c) = ab+ ac.

Note the similarity of the addition and multiplication laws. We say that (K,+) is an Abelian group if (FA0)-
(FA4) hold. (FM0)-(FM4) say that (K\{0}, ·) is also an Abelian group (we have to leave out 0 because as
(FM3) says, 0 does not have a multiplicative inverse).

Examples of fields include Q (the rational numbers), R (the real numbers), C (the complex numbers), and
Zp (the integers mod p, for p a prime number).

Associated with any field K is a non-negative integer called its characteristic, which is defined as follows: the
characteristic of a field K, often denoted char(K), is the smallest number of times one must use the field’s
(or ring’s) multiplicative identity (1) in a sum to get the additive identity (0). If this sum never reaches the
additive identity the field is said to have characteristic zero. That is,

char(K) =


n n is the smallest positive number such that 1 + 1 + · · ·+ 1︸ ︷︷ ︸

n

= 0

0 if the sum of ones never reaches 0

Important examples such as Q, R and C have characteristic zero, while Zp has characteristic p (for prime p).

Vector Spaces

Let K be a field. A vector space V over K is an algebraic structure in which we can add two elements of V
and multiply an element of V by an element of K (this is called scalar multiplication) such that the following
rules hold:

Addition Laws

(VA0) Closure: For any u, v ∈ V there is a unique element u+ v ∈ V .

(VA1) Associativity: For all u, v ∈ V we have u+ (v + w) = (u+ v) + w.

(VA2) Identity: There is an element 0 ∈ V such that v + 0 = 0 + v = v for all v ∈ V .

(VA3) Inverse: For any v ∈ V , there exists −v ∈ V such that v + (−v) = (−v) + v = 0.

(VA4) Commutativity: For any u, v ∈ V we have u+ v = v + u.

Scalar multiplication laws

(VM0) Closure: For any a ∈ K, v ∈ V there is a unique element av ∈ V .

(VM1) Distributivity1: For any a ∈ K, u, v ∈ V we have a(u+ v) = au+ av.

(VM2) Distributivity2: For any a, b ∈ K, v ∈ V we have (a+ b)v = av + bv.

(VM3) Associativity: For any a, b ∈ K, v ∈ V we have (ab)v = a(bv).

(VM4) Identity: For any v ∈ V we have 1v = v (where 1 is the element given by (FM2)).
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Again, we can summarize (VA0)–(VA4) by saying that (V,+) is an Abelian group.

One of the most important examples of a vector space over a field K is the set Kn of all n-tuples with
elements from K (should prove that Kn is a vector space). Addition and scalar multiplication in Kn are
defined by the following rules:

(u1, u2, . . . , un) + (v1, v2, . . . , vn) = (u1 + v1, u2 + v2, . . . , un + vn)

a(v1, v2, . . . , vn) = (av1, av2, . . . , avn)

Note that one of the key features of a vector space is closure under componentwise addition, as shown above.

Appendix C

I had thought that one way to prove the Cauchy–Schwarz inequality is to use the reverse triangle inequality,
but Dave Neary pointed out that I didn’t need it. So I’m leaving the derivation of the reverse triangle
inequality in this appendix.

Theorem: Reverse Triangle Inequality:
∣∣‖x‖ − ‖y‖∣∣ ≤ ‖x− y‖

We can derive the reverse triangle inequality from the triangle inequality [9, 18] by observing that

‖x‖ = ‖x + (−y + y)‖ # add 0 to x: x = x + 0 = x + (−y + y)

= ‖(x− y) + y‖ # addition is associative: v1 + (v2 + v3) = (v1 + v2) + v3

≤ ‖x− y‖+ ‖y‖ # by the triangle inequality: ‖v1 + v2‖ ≤ ‖v1‖+ ‖v2‖
⇒ ‖x‖ ≤ ‖x− y‖+ ‖y‖ # combine expressions for ‖x‖
⇒ ‖x‖ − ‖y‖ ≤ ‖x− y‖ # subtract ‖y‖ from both sides

and

‖y‖ = ‖y + (−x + x)‖ # add 0 to y: y = y + 0 = y + (−x + x)

= ‖(y − x) + x‖ # addition is associative

≤ ‖y − x‖+ ‖x‖ # by the triangle inequality

⇒ ‖y‖ ≤ ‖y − x‖+ ‖x‖ # combine expressions for ‖y‖
⇒ ‖y‖ − ‖x‖ ≤ ‖y − x‖ # subtract ‖x‖ from both sides

⇒ −
[
‖y‖ − ‖x‖

]
≥ −‖y − x‖ # multiply both sides by -1: −1 ∗ (v1 ≤ v2)⇒ −v1 ≥ −v2

⇒ ‖x‖ − ‖y‖ ≥ −‖x− y‖ # ‖y − x‖ = ‖ − (y − x)‖ = ‖x− y‖Equation (5)

⇒ −‖x− y‖ ≤ ‖x‖ − ‖y‖ # rearrange

Combining the expressions for ‖x‖ − ‖y‖ we get −‖x − y‖ ≤ ‖x‖ − ‖y‖ ≤ ‖x − y‖, that is, the reverse

triangle inequality
∣∣‖x‖ − ‖y‖∣∣ ≤ ‖x− y‖. �

LATEX Source

https://www.overleaf.com/read/fgtfvmgdkbhh
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