A Bit on Vector Spaces in Quantum Mechanics

David Meyer
dmm613@gmail.com

Last update: March 15, 2024

1 What is a State in Quantum Mechanics?

Hilbert space \mathcal{H}.

2 The Real Projective Line

The real projective line is the set of all lines that pass through the origin. One way to think about this is as the one-dimensional subspace of "rays" [1, 2]. This is shown on the left in Figure 1 (or Appendix A).

If we slide the red point along the $y=1$ line in Figure 1 the angle θ varies between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ as x varies between $-\infty$ and ∞. In particular, as $x \rightarrow \pm \infty, \theta \rightarrow \pm \frac{\pi}{2}$. That is

$$
\lim _{x \rightarrow \infty} \theta=\frac{\pi}{2}
$$

and

$$
\lim _{x \rightarrow-\infty} \theta=-\frac{\pi}{2}
$$

If we then look at the points (x, θ) you find that the real projective line can be seen as a circle. This is shown on the right in Figure 1 .

Figure 1: Real Projective Line Setup

3 The Real Projective Plane

Acknowledgements

LATEX Source

```
https://www.overleaf.com/read/gjysgsdftjxy
```


References

[1] Gabriele Carcassi. Understanding vector spaces in quantum mechanics. https://www.youtube.com/ watch?v=KEzmw6cKO1U, 2023. [Online; accessed 22-Jan-2024].
[2] Weisstein, Eric W. Ray. https://mathworld.wolfram.com/Ray.html, 2024. [Online; accessed 13-March-2024].

Appendix A: The Real Projective Line

